На правах рукописи

, 70/6mg -

Лынова Анна Сергеевна

ПРИМЕНЕНИЕ МОДИФИЦИРОВАННЫХ СТАТИСТИЧЕСКИХ БУТАДИЕН-СТИРОЛЬНЫХ КАУЧУКОВ В ПРОТЕКТОРНЫХ РЕЗИНАХ ЛЕГКОВЫХ ШИН

05.17.06 – Технология и переработка полимеров и композитов

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении и высшего образования «Воронежский государственный университет инженерных технологий» (ФГБОУ ВО «ВГУИТ»).

Научный руководитель: доктор технических наук, доцент

Карманова Ольга Викторовна

(ФГБОУ ВО «ВГУИТ»)

Официальные оппоненты: Борейко Наталья Павловна

доктор технических наук

(ФГУП «Ордена Ленина и ордена Трудового Знамени Научно – исследовательский институт синтетического каучука имени академика С.В. Лебе-

дева», советник директора) Вострикова Галина Юрьевна кандидат химических наук

(ФГБОУ ВО «Воронежский государственный технический университет», кафедры химии и хими-

ческой технологии материалов, доцент)

Ведущая организация: Федеральное государственное бюджетное

образовательное учреждение высшего образования «МИРЭА – Российский технологический универси-

тет»

Защита диссертации состоится «30» декабря 2020 г. в 14 часов 00 минут на заседании диссертационного совета Д 212.035.08 на базе ФГБОУ ВО «Воронежский государственный университет инженерных технологий» по адресу: 394036,

г. Воронеж, пр. Революции, 19, конференц-зал.

С диссертацией можно ознакомиться в научно-технической библиотеке федерального государственного бюджетного образовательного учреждения высшего образования «ВГУИТ» по адресу: 394036, г. Воронеж, пр. Революции, 19 и на Интернетсайте https://www.vsuet.ru .Полный текст диссертации размещен в сети Интернета на официальном сайте ФГБОУ ВО «ВГУИТ» https://www.vsuet.ru «13» октября 2020 г.

Автореферат диссертации размещен на официальном сайте ФГБОУ ВО «ВГУИТ» https://www.vsuet.ru и на интернет-сайте ВАК РФ https://vak3.minobrnauki.gov.ru «27» октября 2020г.

Автореферат диссертации разослан «16» ноября 2020 г.

Отзывы на автореферат просим присылать по адресу: 394036, г. Воронеж, пр. Революции, 19, Федеральное государственное бюджетное образовательное учреждение высшего образования «ВГУИТ», диссертационный совет Д 212.035.08.

Ученый секретарь диссертационного Д 212.035.08, к.т.н.

Alg-

Власова Л.А

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В связи с ужесточением требований, предьявляемых к пневматическим шинам, особенно во время их эксплуатации в неблагоприятных дорожных условиях, актуальными являются исследования по разработке протекторных резин, обеспечивающих улучшение сцепления на обледенелой и/или мокрой дороге, высокую износостойкость при одновременном соблюдении норм по показателю сопротивление качению и связанной с ним топливной экономичности.

При этом возникает комплекс противоречивых требований к протекторной резине. Например, для снижения сопротивления качению в протекторной рецептуре необходимо использовать большее количество кремнекислотного наполнителя, но при этом может ухудшаться износостойкость. До настоящего времени эти задачи решались применением статистических бутадиен-стирольных каучуков нового поколения и посредством усложнения состава протекторных резин, что требовало проведения большого объема экспериментальных исследований.

Большой вклад в теорию и практику рецептуростроения протекторных резин, создание новых каучуков для повышения надежности и долговечности пневматических шин внесли исследователи научных центров и компаний ООО «НИЦ НИИШП», ООО «НИОСТ» (Сибур), Вф ФГУП «НИИСК», ПАО «Нижнекамскнефтехим», Lanxess Deutschland GMBH, Asahi Chemical IND, российские и иностранные ученые – Золотарев В, Л., Аксенов В.И., Глуховской В.С., Нігао А. S., Jin S. Y., Wendling Р. и другие исследователи. Важнейшей задачей является обеспечение комплекса эксплуатационных характеристик так называемого «магического треугольника»: сопротивления качению, изностойкости, сцепления с мокрой дорогой. Переход к использованию растворных бутадиен-стирольных каучуков в протекторной рецептуре с применением в качестве наполнителей технического углерода и диоксида кремния обеспечил улучшение сопротивления качению, но не в полной мере удовлетворяет требованиям, предъявляемым к современным автомобильным шинам по показателям износостойкости и сцеплению на мокрой/обледенелой дороге. Поэтому разработка

рецептурно-технологических решений по совершенствованию протекторных рецептур путем внедрения новых марок бутадиен-стирольных каучуков растворной полимеризации является актуальной задачей.

Цель работы. Исследование структуры и свойств, модифицированных статистических бутадиен-стирольных каучуков и их влияния на свойства протекторных резиновых смесей и резин.

Для достижения этой цели поставлены следующие задачи:

- 1. Изучение структуры и свойств, модифицированных статистических бутадиен-стирольных каучуков и проведение сопоставительного анализа со свойствами серийного каучука ДССК-2560-M27.
- 2. Исследование пласто-эластических, вулканизационных свойств резиновых смесей, физико-механических и упруго-гистерезисных показателей резин, изготовленных на основе модифицированных статистических бутадиен-стирольных каучуков по стандартной и промышленным рецептурам протектора легковых шин.

 3. Разработка рецептурно-технологических решений получения протекторных резин на основе комбинации модифицированных (высоковязкого и высокостирольного) статистических бутализм стиром и из компусор.
- диен-стирольных каучуков.
- 4. Опытно-промышленная апробация применения модифицированных статистических бутадиен-стирольных каучуков в протекторных резинах легковых шин.

Научная новизна диссертационной работы.

- 1. Впервые разработаны рецептурно-технологические реше-1. Впервые разрасотаны рецептурно-технологические решения и получены протекторные резины на основе статистических бутадиен-стирольных каучуков с повышенным содержанием (> 38%) стирольных звеньев, обеспечивающие улучшение сцепления протекторных резин с мокрой дорогой (п. 2 паспорта научной специальности 05.17.06).
- Выявлено, что увеличение содержания стирола выше 38 %, *транс*-звеньев в каучуке и сужение молекулярно-массового распределения обуславливают улучшение сцепных характеристик протекторных резин, оцененных по увеличению tg δ при 0 °C .
 Установлены пределы изменения молекулярно-массовых характеристик высоковязкого ДССК, обеспечивающие удовлетво-

рительные технологические свойства каучуков и резиновых смесей, упруго-прочностные и гистерезисные свойства вулканизатов на их основе: полидисперсность каучуков должна находиться в пределах 1,7-2,1.

- 4. На основе анализа структурных характеристик и свойств 4. На основе анализа структурных характеристик и свойств опытных каучуков показано, что использование комбинации высокостирольного каучука ДССК-4040-М27 и ДССК-2560-М27ВВ в соотношении 70/30 и 60/40 в протекторных резиновых смесях позволяет улучшить износостойкость при сохранении высокого уровня упруго-гистерезисных свойств протекторных резин.

 5. Показано, что использование в протекторной рецептуре высоковязкого каучука ДССК-2560-М27ВВ обеспечивает улучшение упруго-гистерезисных свойств благодаря высокой молекулярной массе каучука и узкому молекулярно-массерому распреденню

массе каучука и узкому молекулярно-массовому распределению.

Соответствие паспорту заявленной специальности. Тема и содержание диссертационной работы соответствует пунктам 2 и 3 паспорта специальности 05.17.06 – «Технология и переработка полимеров и композитов».

Методология и методы исследования. Научная методология исследований основана на базовых знаниях закономерностей влияния изменения микро- и макроструктуры растворных бутадиен-стирольных каучуков на свойства протекторных резиновых смесей и вулканизатов на их основе. Основными методами исследования являлись: метод ИК-

на их основе. Основными методами исследования являлись: метод ИКспектроскопии для оценки микроструктуры каучуков, гельпроникающая хроматография (ГПХ) для оценки молекулярно-массовых характеристик, дифференциальная сканирующая калориметрия для оценки температуры стеклования, стандартизированные методы оценки свойств резиновых смесей и вулканизатов.

Достоверность и обоснованность результатов работы. Научные положения и выводы, изложенные в диссертационной работе, базируются на большом объеме экспериментальных данных, которые соотносятся с современными научными трактовками зарубежных и отечественных исследователей. Достоверность полученных результатов обеспечивалась применением общепринятых методик исследования каучуков, резиновых смесей и вулканизатов на со-

временном испытательном оборудовании с высоким уровнем точности измерений. Обработка результатов экспериментов осуществлена с помощью современных информационных и программных средств.

Практическая значимость работы. Разработаны и внедрены в производство легковых шин протекторные резины на основе высоковязкого ДССК-2560-M27BB и высокостирольного ДССК-4040-M27, что позволило улучшить сцепные характеристики на обледенелой / мокрой дороге.

Предложены рецептурно-технологические решения получения протекторных резин, на основе комбинации модифицированных статистических бутадиен-стирольных каучуков, которые включены в технологический регламент легковых шин.

На АО «Воронежсинтезкаучук» выпущены опытные партии ДССК-2560-M27ВВ и ДССК-4040-M27, которые успешно прошли апробацию в рецептурах протектора «зеленых» шин в ПАО «Нижнекамскшина», АО «Белшина». Выпущены опытные партии легковых шин, проведены стендовые и дорожные испытания.

Положения, выносимые на защиту:

- результаты исследования макро- и микроструктуры опытных каучуков ДССК-2560-M27 ВВ, ДССК-4040-M27.
- результаты исследования влияния содержания стирольных звеньев в сополимере на физико-механических, упруго-гистерезисных свойств протекторных резиновых смесей для легковых шин.
- новые рецептурно-технологические решения применения в протекторных резиновых смесях каучука с высоким содержанием стирольных звеньев ДССК-4040-M27, высоковязкого статистического бутадиен-стирольного каучука ДССК-2560-M27BB вместо стандартной марки ДССК-2560-M27.
- рекомендации по выбору соотношения ДССК высоковязкого и ДССК с высоким содержанием стирольных звеньев в рецептуре протектора.

Апробация работы. Результаты работы докладывались на I Международной студенческой научно-практической конференции «Инновации в химических и нефтехимических производствах и

биотехнологии» (Воронеж, 2015 г.); XXI, XXII, XXIII, XXIV научно-практических конференциях «Резиновая промышленность: Сырье, материалы, технологии» (Москва 2016 - 2019 гг.); VII, VIII, IX Всероссийских конференциях «Каучук и Резина: традиции и новации» (Москва, 2017 - 2019 гг.); 80-84-ой научно-технической конференциях профессорско-преподавательского состава, научных сотрудников и аспирантов (с международным участием) (Минск, 2016 г. – 2020 г.); Всероссийской конференции с международным участием «Проблемы и инновационные решения в химической технологии (ПИРХТ-2019) (Воронеж, 2019 г.); XXXIV Международной конференции «Релаксационные явления в твердых телах» (Воронеж, 2019 г.).

Личный вклад автора состоит в участии в постановке задач, поиске и анализе литературно-патентных данных, проведении экспериментальных исследований, обработке и анализе полученных данных, систематизации и интерпретации результатов, формулировке научных положений и выводов, написании статей и тезисов докладов по теме исследования.

Публикации. По теме диссертации опубликовано 22 печатные работы, в том числе 5 статей в журналах, рекомендованных ВАК РФ, 17 - в сборниках материалов конференций.

Структура работы. Диссертация состоит из введения, трех глав (литературный обзор, описание объектов и методов исследования, экспериментальная часть и обсуждение результатов), выводов, списка цитируемой литературы из 184 наименований, приложений. Работа изложена на 138 страницах, содержит 37 таблиц, 39 рисунков и 4 приложения.

Основное содержание работы

Во введении обоснована актуальность работы, сформулирована ее цель, научная новизна и практическая значимость.

В первой главе представлен анализ литературных данных по проблеме улучшения эксплуатационных характеристик протекторных резин. Приведены требования, предъявляемые к легковым шинам. Рассмотрены особенности строения протекторных рецептур с примене-

нием статистических бутадиен-стирольных сополимеров. На основании изученного материала сформулированы цель и основные задачи работы.

Во второй главе представлены характеристики исследуемых растворных бутадиен-стирольных каучуков, приведены рецептуры протекторных резин легковых шин.

Объектами исследования являлись протекторные резиновые смеси на основе статистических бутадиен-стирольных каучуков с высокой вязкостью ДССК-2560-М27ВВ, с высоким содержанием стирола ДССК-4040-М27, опытные партии которых выпущены в условиях АО «Воронежсинтезкаучук». Исследования свойств протекторных резиновых смесей и резин различного состава проводили в сравнении с образцами на основе ДССК-2560-М27 серийного производства.

Для исследования микроструктуры использовали ИК-спектрометр Nicolet iS10 (ф. «Thermoscientific»). Измерение молекулярномассовых характеристик проводились на гель-хроматографе «Вгееze» (ф. «Waters») с рефрактометрическим детектором.

Сравнительный анализ свойств композиций на основе исследуе-

Сравнительный анализ свойств композиций на основе исследуемых каучуков проводили с использованием протекторных резиновых смесей, содержащих 55-86 масс. ч. кремнекислотного наполнителя Zeosil 1165MP и 5-13 масс. ч. технического углерода N339. В качестве агента сочетания выбран бис-триэтоксилилпропилтетрасульфид под торговой маркой Si-69.

торговой маркой S1-69.

Приготовление резиновых смесей осуществляли в лабораторном резиносмесителе K1 Mk4 Intermix MIXER ф. Farrel с объемом камеры 1,5 литра. Исследования вязкости по Муни резиновых смесей осуществляли на вискозиметре MV-2000, вязкоупругие свойства резиновых смесей анализировали на приборе RPA-2000, реологические характеристики определяли с использованием прибора MDR-2000 (Alpha Technologies) в соответствии с ASTM D 5289. Технологичность резиновых смесей оценивали по свойствам экструзии, используя лабораторный экструдер Plastograph EC Plus (L/D 19:10) с головкой типа Гарви (Brabender). Физико-механические показатели резин определяли в соответствии с требованиями государственных стан-

дартов на разрывной машине Zwick/Roell Z005. Упруго-гистерезисные свойства вулканизатов анализировались на приборе DMA 242 E Artemis.

В третьей главе представлены результаты исследований, экспериментальные данные и осуществлен анализ полученных результатов.

Разработка рецептурно-технологических решений, направленных на улучшение комплекса свойств протекторных резин базируется на применении в качестве полимерной основы к новых марок растворных бутадиен-стирольных каучуков с высокой вязкостью ДССК-2560-М27ВВ и с высоким содержанием стирола ДССК-4040-М27 и их комбинаций.

Исследование свойств статистического бутадиенстирольного каучука ДССК-2560-M27BB, резиновых смесей и вулканизатов на его основе

В ходе исследований и анализа структурных характеристик каучуков установлено, что опытный каучук имеет повышенное содержание 1,4-*транс* звеньев (табл.1), в тоже время по температуре стеклования опытные образцы не отличаются от серийного ДССК-2560-M27 (ТУ 38.40383-2001). Для ДССК-2560-M27BB значения среднечисловой и среднемассовой молекулярных масс выше, чем у серийного, и он характеризуется более узким ММР. Следствием таких молекулярно-массовых характеристик является ухудшение технологических свойств: увеличение вязкости по Муни на 10-12 ед. В ходе дополнительных экспериментов установлено, что для удовлетворительной перерабатываемости опытного каучука необходимы следующие диапазоны изменения молекулярно-массовых характеристик: значение среднемассовой молекулярной массы должно составлять $Mw \cdot 10^{-3} = 500 \pm 50$ а.е.м, полидисперсность - $M_w/M_n = 1,9 \pm 0,2$.

Опытные каучуки испытаны в рецептурах протектора, отличающихся полимерной основой, содержанием кремнекислотного наполнителя, технического углерода и мягчителя. Протекторная рецептура ПР1 содержала комбинацию ДССК и изопренового каучука (ГОСТ 14925-79), 86 масс. ч. диоксида кремния (Zeosil 1165MP), 13 масс. ч. технического углерода, 20 масс. ч. масла мягчителя. В протекторе ПР2 использовали каучуки ДССК и полибутадиеновый (ТУ 38.303-03-071-2002), 65 масс. ч. Zeosil

1165MP, 5 масс. ч. технического углерода, 6 масс. ч. мягчителя. Рецептура протектора ПР3 отличалась от ПР2 меньшим содержанием Zeosil 1165MP -55 масс. ч., большим содержанием технического углерода -15 масс. ч. и отсутствием мягчителя. Поскольку вязкость опытного каучука выше показателя серийного, данная тенденция прослеживается и для вязкости по Муни резиновой смеси на их основе — повышение вязкости составило от 7 до 40 единиц.

Таблица 1 — Структурные характеристики и основные свойства каучуков ДССК

Наименование показателей	Серийный ДССК- 2560-M27	ДССК-2560-M27BB*					
Микроструктура							
Мас. доля St-св., %	25,5	25,1					
Мас. доля 1,2-зв., %	65,0	66,1					
Мас. доля 1,4- <i>транс</i> , %	,4-транс, % 13,5 16,3						
Молекулярно	о-массовые характеристин	СИ					
Среднечисловая молекулярная масса (M _n , 10 ⁻³), а.е.м.	212	263					
Среднемассовая молекулярная масса (M _w , 10 ⁻³), а.е.м.	450	498					
Полидисперсность (M _w / M _n)	2,12	1,89					
Свойства каучука							
Вязкость по Муни, ML ₁₊₄ (100 °C)	50	62					
Релаксация, А	966	889					
Температура стеклования, °С	-24,6	-26,4					
Пластичность, усл.ед.	0,35	0,38					
Эластическое восстановление, мм	2,24	1,39					

^{*} среднее значение по нескольким партиям

В ходе приготовления резиновых смесей установлено, что лучшее диспергирование наполнителей, оцененное по модулю G' при 1% деформации, и эффекту Пейна наблюдается для резиновых смесей ПР1 и ПР2 на основе ДССК-2560-M27BB (табл.2). По нашему мнению, это обуславливает лучшие физико-механические показатели резин на их основе.

Исследования эксплуатационных характеристик проводили на лабораторной установке LAT-100, позволяющей оценить комплекс сцепных характеристик на разной дорожной поверхности, износостойкости и сопротивления качению резин, и обеспечивающей хорошую корреляцию со стендовыми и дорожными испытаниями

шин. После обработки массива данных, полученных на лабораторной установке LAT-100 построена диаграмма рейтинговой оценки прогнозируемых эксплуатационных свойств шин (рис.1). Установлено улучшение сопротивления качению и сцепления с влажной дорогой для резин на основе ДССК-2560-M27BB.

Анализ результатов испытаний каучука ДССК-2560-M27BB в рецептурах протекторных резин показал целесообразность его использования для улучшения эксплуатационных характеристик протектора шин.

Поскольку показатели вязкости по Муни опытного каучука и резиновых смесей на его основе превышают значения серийных образцов можно прогнозировать ухудшение обрабатываемости резиновой смеси. Для компенсации этого явления предлагается изменение технологического режима смешения, а именно увеличение продолжительности операции пластикации каучука на 3%.

Таблица 2 — Свойства резиновых смесей и вулканизатов на основе исследуемых каучуков

Наименование	Серийный ДССК-	ДССК-2560-М27ВВ				
показателей	2560-M27 (ΠP1)	ПР1	ПР2	ПР3		
Вязкость по Муни,	36	45	75	68		
ML ₁₊₄ (100 °C)	50	13	7.5	00		
G' при 1% деформации, кПа	143	131	200	302		
Эффект Пейна, кПа	105	87	102	277		
Вулканизационные характери	стики 160 °C×30 мин.:					
МL, дНм	1,4	1,4	2,5	2,2		
МН, дНм	12,3	11,8	13,5	12,9		
ts1, мин.	1,2	1,7	2,3	1,9		
t' 25, мин	3,2	3,1	3,2	3,7		
t' 50, мин	4,3	3,9	4,1	5,2		
t' 90, мин	9,3	9,3	12,2	13,4		
Физико-механические показатели 160 °С×20 мин.:						
f_{100} , МПа	2,3	2,3	2,2	2,0		
f ₃₀₀ , МПа	9,1	11,1	12,8	9,7		
$f_{\rm p}$, МПа	16,1	17,2	16,9	17,0		
ε _p , %	500	450	380	500		
Н, усл.ед.	63	62	64	56		

Примечание. f_{100} , f_{300} — условное напряжение при удлинении 100 и 300 %, соответственно; $f_{\rm P}$ — условная прочность при растяжении; $\epsilon_{\rm P}$ — относительное удлинение при разрыве; H — твердость по Шору А.

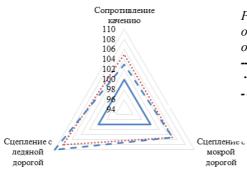


Рисунок 1 - Диаграмма рейтинговой оценки прогнозируемых эксплуатационных свойств на установке LAT-100: ——— ДССК-2560M27; ……— ДССК-2560M27BB, ПР1;

······ДССК-2560M27BB, ПР1 -----ДССК-2560M27BB, ПР2

Исследование свойств растворного бутадиен-стирольного каучука с высоким содержанием стирола ДССК-4040-M27, резиновых смесей и вулканизатов на их основе

В ходе анализа структуры каучука ДССК-4040-M27 установлено, что содержание стирола составляет 38-40% (табл. 3), при этом содержание 1,2-звеньев значительно меньше, чем у серийного каучука, что обуславливает изменение технологических свойств резиновых смесей и физико-механических показателей вулканизатов.

Таблица 3 – Свойства каучуков ДССК от разных партий

, , , , , , , , , , , , , , , , , , ,		_				
Наименование	Серийный	ДССК-	ДССК-			
показателей	ДССК-2560- 4040-М2		4040-M27			
	M27	партия 1	партия 2			
Вязкость по Муни, ML ₁₊₄ (100 °C)	50	47	48			
Пластичность	0,35	0,48	0,50			
Эластическое восстановление, мм	2,24	0,7	0,6			
Микро	структура					
Мас. доля St-св., %	25,5	40,0	38,0			
Мас. доля 1,2-зв., %	65,0	38,8	39,0			
Мас. доля 1,4- <i>транс</i> , %	13,5	37,0	39,0			
Молекулярно-массовые характеристики						
Среднечисловая молекулярная масса $(M_n, 10^{-3})$, а.е.м.	212	187	197			
Среднемассовая молекулярная масса $(M_w, 10^{-3})$, а.е.м.	450	282	300			
Полидисперсность (M_w/M_n)	2,12	1,51	1,52			

Установлено, что применение ДССК-4040-M27 в протекторной резиновой смеси приводит к снижению времени вулканизации для рецептуры ПР1, а также обеспечивает увеличение прочности связи каучука с наполнителем, так как индикатор f_{500}/f_{100} увеличивается при его использовании (табл.4). Резины на основе опытного каучука обладают высокими упруго-прочностными показателями на фоне увеличения их истираемости. Анализ упруго-гистерезисных свойств резин на основе ДССК-4040-M27 показал, что увеличение содержания стирольных звеньев в каучуке способствует увеличению tg δ при 0 °С протекторных резин, а значит улучшению сцепления с мокрой дорогой.

Таблица 4 – Вулканизационные характеристики, физико-механи-

ческие и упруго-гистерезисные свойства резин

Потрумнородина по	Серийный	ДССК-4040-	ДССК-4040-	ДССК-			
Наименование по- казателей	ДССК-2560-	М27 обр.1	М27 обр.2	4040-M27			
казателеи	M27 (ΠΡ1)	ПР1		ПР2			
Вулканизационные :	Вулканизационные характеристики 160 °С×30 мин.:						
МL, дНм	1,4	1,6	1,5	2,1			
МН, дНм	12,3	11,3	11,2	12,7			
ts1, мин.	1,2	1,6	1,8	2,9			
t' 25, мин	3,2	2,9	3,0	3,2			
t' 50, мин	4,3	3,7	3,6	4,1			
t′ 90, мин	9,3	8,0	8,1	10,9			
Физико-механичес	кие показатели	160 °С×20 мин.:					
f_{100} , M Π a	2,3	2,2	2,1	2,0			
f ₃₀₀ , МПа	9,1	9,3	9,1	11,2			
f_{300}/f_{100}	4,0	4,2	4,3	5,6			
$f_{\rm p},~{ m M}\Pi{ m a}$	16,1	18,0	18,6	15,9			
ε _p , %	500	530	550	390			
Н, усл.ед.	63	67	67	62			
Истирание по Шо-	85	107	109	99			
ппер-Шлобаху, мм ³	65	107	109	99			
Упруго-гистерезисные свойства:							
tg δ при 0 °C	0,423	0,456	0,455	0,679			
tg δ при +60 °C	0,150	0,154	0,156	0,154			

Методом дифференциальной сканирующей калориметрии проведены исследования температурных переходов в исследуемых каучуках ДССК и их смесях с СКИ-3 (в соответствии с их содержанием в полимерной основе протекторной резиновой смеси ПР1 -

СКИ-3: ДССК=30:70). Установлено, что при замене ДССК-2560-М27 на ДССК-2560-М27ВВ или ДССК-4040-М27 в двухфазной системе СКИ-3+ДССК сближаются температуры стеклования (табл. 5), что обеспечивает улучшение релаксационных свойств резин и формирование более равномерной вулканизационной структуры.

Таблица 5 — Значения температур стеклования для исследуемых каучуков и их смесей

Vorman	Индивидуальные каучуки		Смеси каучуков				
Каучуки	Tg, °C	ΔC_p ,	Tg,	Tg, ℃		ΔСр, Дж/г*К	
	1g, C	Дж/г•К	Т _g СКИ-3	ТдДССК	СрСКИ-3	Срдсск	
СКИ-3	-60,3	0,531	-	-	-	-	
ДССК-2560-М27	-24,6	0,508				-	
ДССК-2360-10127	10,0	0,025	-				
Смесь ДССК-2560- M27 + СКИ-3	-	-	-61,1	-21,9 -	0,200	0,193	
ДССК-2560-М27ВВ	-26,4 12,0	0,489 0,036	-	-	-	-	
Смесь ДССК-2560- M27BB + СКИ-3	-	-	-60,2	-23,4	0,170	0,181	
ДССК-4040-М27	-28,0	0,407					
	9,6	0,015	_	-	-	-	
Смесь ДССК-4040- M27 + СКИ-3	-	-	60,8	-23,2	0,190	0,291	

Сопоставительный анализ результатов испытания высокостирольного каучука в рецептурах протекторных резин разных составов показал, что его применение обеспечивает требуемый уровень технологических свойств, улучшение физико-механических показателей, упруго-гистерезисных свойств вулканизатов на фоне снижения износостойкости. Для улучшения показателя сопротивление истиранию целесообразно рассмотреть рецептурно-технологические решения по использованию комбинации опытных каучуков ДССК-2560-М27ВВ и ДССК-4040-М27.

Рецептурно-технические решения по созданию протекторных резин с применением комбинации высокостирольного ДССК-4040-M27 и ДССК-2560-M27BB Анализ полученных результатов (табл. 2-4) показал, что при использовании комбинации ДССК-4040-M27 и ДССК-2560-M27ВВ в рецептуре протектора можно обеспечить улучшение основных технических свойств резиновых смесей и резин на их основе по сравнению с индивидуально применяемыми исследуемыми каучуками.

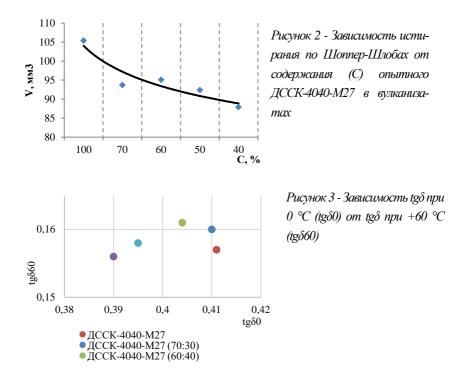

Проведены сравнительные испытания протекторных резиновых смесей (по рецептуре ПР1) на основе ДССК-2560-M27BB, ДССК-4040-M27 в разных соотношениях (табл.6).

Таблица 6 – Свойства протекторных резиновых смесей и вулканизатов на основе комбинации каучуков ДССК-2560-M27BB, ДССК-4040-M27 (по рецептуре ПР1)

Наименование	Соотношение ДССК-4040-М27: ДССК-2560-М27 ВВ					
показателей	100:0	70:30	60:40	50:50	40:60	
Вязкость по Муни, ML ₁₊₄ (100 °C)	46	47	44	44	45	
Эффект Пейна, кПа	238	204	208	203	210	
Вулканизационные хара	ктеристики	160 °C×30 M	ин.:			
МL, дНм	1,6	1,7	1,7	1,6	1,5	
МН, дНм	12,5	12,7	12,5	12,3	12,7	
ts1, мин.	1,1	1,1	1,2	1,0	1,3	
t' 25, мин	2,9	3,2	3,4	3,3	3,4	
t' 50, мин	3,9	4,3	4,5	4,6	4,5	
t' 90, мин	9,1	8,5	9,0	8,8	9,2	
Физико-механические показатели 160 °С×20 мин.:						
f ₁₀₀ , МПа	2,3	2,2	2,0	2,2	2,2	
f ₃₀₀ , МПа	8,7	8,8	8,3	8,8	8,6	
$f_{\rm p}$, МПа	17,1	17,3	17,1	16,5	16,3	
ε _p , %	530	520	520	510	520	
Н, усл.ед.	67	66	65	65	65	
Эластичность по от- скоку при 23 °C, %	16	17	17	19	19	

Установлено, что по уровню технологических, вулканизационных, упруго-прочностных свойств исследуемые образцы близки. В ходе исследования износостойкости протекторной резины установлено, что использование смеси каучуков ДССК-2560-M27ВВ и ДССК-4040-M27 при содержании ДССК-4040-M27 не более 70 % мас. обеспечивает улучшение сопротивления истиранию (рис. 2). При этом

наблюдается эффект улучшения сцепления с мокрой дорогой. Из данных рис. З видно, что при сопоставимых значениях $tg\delta$ при 60 °C для исследуемых резин близкий уровень $tg\delta$ при 0 °C сохраняется для вариантов с содержанием высокостирольного ДССК не менее 60 % мас.

ВЫВОДЫ

1. Установлено, что применение высоковязкого каучука с высокой молекулярной массой и узким молекулярно-массовым распределением обеспечивает улучшение упруго-гистерезисных свойств протекторных резинах на их основе. Выявлено, что для улучшения упруго-прочностных показателей, сцепления с мокрой дорогой, сопротивления качению среднемассовая молекулярная масса должна составлять $Mw \cdot 10^{-3} = 500 \pm 50$ а.е.м., а полидисперсность — $Mw/Mn = 1,9 \pm 0,2$.

- 2. Исследования протекторных резиновых смесей, отличающиеся системой наполнения, показали, что при увеличении вязкости по Муни каучуков ДССК-2560-М27ВВ на 10 усл.ед. и вязкости по Муни резиновых смесей на 7 усл.ед., технологические параметры смешения находятся на одном уровне с серийным ДССК-2560-М27. При этом технологический режим изготовления исследуемых резиновых смесей практически не отличается от серийного.
- 3. Показано, что применение в протекторной рецептуре высоковязкого каучука с повышенным содержанием 1,2 -, 1,4-*транс*-звеньев обеспечивает улучшение распределения наполнителей в матрице каучука, что подтверждается значениями показателя эффекта Пейна и обуславливает снижение tg δ при +60 °C на 5%, характеризующего сопротивление качению.
- 4. Установлено, что применение каучука ДССК с высоким содержанием стирола 38-40% позволяет улучшить $tg \, \delta$ при 0 °C, а, следовательно, и сцепление с мокрой дорогой в среднем на 7-29 % для протекторных резин разного наполнения.
- 5. Предложено рецептурное решение по использованию смеси каучуков ДССК-2560-М27ВВ и ДССК-4040-М27 для повышения на ~10% износостойкости протекторных резин при сохранении показателей сопротивление качению и сцепление на мокрой дороге. Сравнительный анализ диспергирования наполнителей в каучуковой матрице показал, что использование комбинации каучуков обеспечивает их лучшее распределение - показатель эффект Пейна улучшается на 10-13 %.
- 6. Показано преимущество предложенных рецептурно-технологических решений для протекторных резин на основе опытных каучуков по результатам рейтинговой оценки эксплуатационных показателей. Промышленная апробация в условиях ПАО «Нижнекамскшина» и АО «Белшина» показала их эффективность и целесообразность применения в технологии пневматических шин.

Список основных публикаций по теме диссертации Статьи в рецензируемых изданиях, рекомендованных ВАК

1. Фаляхов М.И., Лынова А.С., Карманова О.В., Михалева Н.А. Исследование эксплуатационных свойств резин на основе синтетического бутадиен-стирольного каучука ДССК-2560-М27

- ВВ // Вестник Воронежского государственного университета инженерных технологий. 2016. №1 (67). С. 146-150.
- 2. Ярцева Т.А., Лагунова С.А., Лынова А.С., Ткачев А.В. Неодимовый полибутадиен, модифицированный тетрахлоридом олова и тетрахлоридом кремния. Свойства каучука и резин на их основе // Промышленное производство и использование эластомеров. Москва 2017. Выпуск 3-4 С. 45-49.
- 3. Румянцева А.Л., Попова С.Б., Полухин Е.Л., Ткачев А.В., Лынова А.С. Изучение способов термостабильности функционализированных бутадиен-стирольных каучуков // Вестник Воронежского государственного университета инженерных технологий. 2018. №1 (75). С. 245-250.
- 4. Лынова А.С., Карманова О.В., Михалева Н.А, Румянцева А.Л. Ткачев А.В. Разработка рецептурного решения по применению растворного бутадиен-стирольного каучука с высоким содержанием стирола в протекторной рецептуре // Каучук и Резина. 2019, Т.78, №3. С.168-171(Chemical Abstracts).
- 5. Лынова А.С., Карманова О.В., Михалева Н.А, Ткачев А.В. Влияние винильных звеньев в растворных бутадиен-стирольных каучуках на свойства в резинах // Каучук и Резина. 2019, Т.78, №3. С.172-175 (Chemical Abstracts).

Публикации в сборниках трудов научных конференций

- 6. Лынова А.С., О.В. Карманова, М.И. Фаляхов, Н.А. Михалева. Свойства протекторных резин на основе высоковязкого бутадиенстирольного каучука ДССК-2560-М27 ВВ. // Материалы I Международной студенческой научно-практической конференции «Инновации в химических и нефтехимических производствах и биотехнологии». Воронеж 10-11 декабря 2015 г., с.34.
- 7. Рахматуллин А.И., Каюмова М.А., Лынова А.С., Никулин М.В., Глебова Е.А. Новые каучуки и ТЭП ПАО «Сибур Холдинг». // Материалы IX Международной научно-практической конференции. 2016 г., c.84-85.
- 8. Лынова А.С., Фаляхов М.И., Михалева Н.А, Ткачев А.В., Глебова Е.А. Влияние содержания 1,4-транс звеньев в растворном бутадиен-стирольном каучуке на выходные характеристики резин // МатериалыХХІ Научно-практическая конференция «Резиновая промышленность: Сырье, материалы, технологии». Москва 2016, с.84.

- 9. Лынова А.С., Фаляхов М.И., Михалева Н.А, Ткачев А.В., Глебова Е.А. Разработка рецептурного решения по применению ДССК-4040-M27 в протекторной рецептуре // Материалы XXI Научно-практическая конференция «Резиновая промышленность: Сырье, материалы, технологии». Москва 2016, с.85-86.
- 10. Лынова А. С., Карманова О. В., Фаляхов М. И., Михалева Н. А. Влияние структурных характеристик высоко стирольного каучука на свойства резиновых смесей и вулканизатов на их основе // Материалы 80-ой научно-технической конференции профессорско-преподавательского состава, научных сотрудников и аспирантов (с международным участием): 1-12 февраля 2016 г., БГТУ, Минск, с.51.
- 11. Лынова А.С., Карманова О.В., Фаляхов М.И. Изучение свойств резиновых смесей и вулканизатов на основе высокостирольного ДССК // Материалы 54-й отчетной научной конференции преподавателей и научных сотрудников ВГУИТ за 2015 год. Воронеж 2016.
- 12. Лынова А.С. Основной фокус работы Научно-исследовательского центра ООО «СИБУР» Клиентоориентированность // Материалы VII Всероссийская конференция «Каучук и Резина 2017: традиции и новации». Москва 2017, с.21.
- 13. Лынова А. С., Карманова О. В., Фаляхов М. И. Изучение свойств резиновых смесей и вулканизатов на основе высокостирольного ДССК // // Материалы 55-й отчетной научной конференции преподавателей и научных сотрудников ВГУИТ за 2016 год, с. 130.
- 14. Лынова А.С., Михалева Н.А, Ткачев А.В., Карманова О.В. Влияние различных каталитических систем на свойства полибутадиеновых каучуков и резин на их основе // // Материалы XXIII научнопрактической конференции «Резиновая промышленность: Сырье, материалы, технологии». Москва 2018, с.28-29.
- 15. Карманова О.В., Лынова А.С. Рецептурные решения по применению высокостирольного каучука ДССК в протекторной резине // Материалы LVI отчетной научной конференции преподавателей и научных сотрудников ВГУИТ за 2017 год. Часть 1. Воронеж, 2018, с.148.
- 16. Лынова А.С., Ткачев А.В., Михалева Н.А., Карманова О.В. Оценка свойств резин на основе бутадиеновых каучуков, полученных на различных каталитических системах // // Материалы VIII Всероссийской конференции «Каучук и Резина 2018: традиции и новации». Москва 2018, с.45.

- 17. Лынова А.С., Михалева Н.А, Ткачев А.В., Карманова О.В. Влияние содержания 1,2-звеньев в растворном бутадиен-стирольном каучуке на свойства резиновых смесей и вулканизатов // Материал докладов XXIV научно-практической конференции «Резиновая промышленность: Сырье, материалы, технологии». Москва 2019, с.53-54.
- 18. Лынова А.С., Ткачев А.В., Михалева Н.А., Карманова О.В. Влияние винильных звеньев в растворных бутадиен-стирольных каучуках на свойства резиновых смесей и вулканизатов // // Материалы IX Всероссийской конференции «Каучук и Резина 2019: традиции и новации». Москва, 2019 г., с.84.
- 19. Карманова О.В., Лынова А.С., Михалева Н.А. Улучшение эксплуатационных характеристик легковых шин // Материалы LVII отчетной научной конференции преподавателей и научных сотрудников ВГУИТ за 2018. Воронеж. 2019, с.121.
- 20. Лынова А.С., Карманова О.В., Михалева Н.А., Ткачев А.В. Высокостирольный растворный бутадиен-стирольный каучук и его влияние на свойства в протекторных резинах // Материалы всероссийской конференции с международным участием «Проблемы и инновационные решения в химической технологии (ПИРХТ-2019)». Воронеж, 2019 г., с.271-272.
- 21. Карманова О.В., Подвальный С.Л., Шутилин Ю.Ф., Тихомиров С.Г., Лынова А.С. Особенности релаксационно-кинетического характера вулканизации смесей каучуков // // Материалы XXIV Международной конференции: «Релаксационные явления в твердых телах», 2019 г., с.183-185
- 22. Карманова О.В., Лынова А.С., Фатнева А.Ю. Исследование свойств протекторных резин при введении нового активатора вулканизации // Материалы 84-й научно-технической конференции, посвященной 90-летнему юбилею БГТУ и Дню белорусской науки (с международным участием): 3-14 февраля 2020 г., БГТУ, Минск, с.271.

Подписано в печать 30.10.2020. Формат 60х84 1 /₁₆. Усл. печ. л. 1,16. Тираж 100 экз. Заказ 49 . ФГБОУ ВО «Воронежский государственный университет инженерных технологий» (ФГБОУ ВО ВГУИТ) Отдел оперативной полиграфии Адрес университета и отдела оперативной полиграфии 394036, Воронеж, пр. Революции, 19