МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНЫХ ТЕХНОЛОГИЙ»

<u>"26" мая 2022 г.</u>

(подпись)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

<u>Химические реакторы</u> (наименование дисциплины)

Специальность
18.05.02 Химическая технология материалов
современной энергетики

специализация № 3 "Технология теплоносителей и радиоэкология ядерных энергетических установок"

> Квалификация выпускника **Инженер**

Разработчик			Нифталиев С.И.	
	(подпись)	(дата)	(Ф.И.О.)	
СОГЛАСОВАНО) :			
Заведующий ка	федрой _Н <u>ХиХ</u>	<u>T</u>		
	(наименов	ание кафедры, являющейс	ся ответственной за специальность)	
		<u>_</u>	Нифталиев С.И	
(подпись)	(дата)	_	(Ф.И.О.)	

1. Цели и задачи дисциплины

Целями освоения дисциплины «Химические реакторы» являются:

- формирование у обучающихся знаний по теории химических процессов, протекающих в реакторах;
- формирование компетенций, необходимых для реализации научноисследовательской и проектной деятельностей.

Задачи дисциплины:

профессиональная деятельность, которая включает:

- исследование радиационной устойчивости материалов и радиационнохимических процессов в теплоносителях ядерных энергетических установок;

производственно-технологическая деятельность:

- формирование способности понимать общие закономерности химикотехнологических процессов и использовать основные законы химии в комплексной производственно-технологической деятельности;
- освоение и ввод в эксплуатацию новых технологических процессов и оборудования;

научно-исследовательская деятельность:

- формирование способности выполнять расчеты основных характеристик химического процесса, выбирать рациональную схему производства заданного продукта, оценивать технологическую эффективность производства;

организационно-управленческая деятельность:

- осуществление технического контроля в производстве материалов современной энергетики;

проектная деятельность:

- разработка исходных данных для проектирования новых технологических процессов и оборудования.

Объектами профессиональной деятельности являются:

- оборудование, приборы и методы обеспечения аналитического контроля проведения этих процессов в лабораторных и промышленных условиях.

2. Перечень планируемых результатов обучения, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины в соответствии с предусмотренными компетенциями обучающийся должен:

Nº	Код	Содержание	В результате	изучения учебной д	дисциплины
	компетен	компетенции	06	бучающийся должен	:
	ции	(результат	знать	уметь	владеть
		освоения)		-	
1	ПК-10	способностью	методику выбора	выбирать тип	методами
		самостоятельно	реактора и	реактора и	расчета и
		выполнять	расчета	выполнять	анализа
		исследования с	процесса; теорию	расчет	процессов в
		использованием	химических	технологических	химических
		современной	процессов,	параметров	реакторах
		аппаратуры и	протекающих в		
		методов	реакторах		
		исследования в			
		области объектов			
		профессионально			
		й деятельности,			

		проводить корректную обработку результатов и устанавливать адекватность моделей			
2	ПК-11	готовность использовать методы оценки риска и разрабатывать меры по обеспечению безопасности разрабатываемых новых технологий обращения с объектами профессионально й деятельности	основы теории процесса в химическом реакторе, реакционные процессы и реакторы ядерной отрасли	определять оптимальные параметры процесса в химическом реакторе	методами выбора химических реакторов, обеспечиваю- щих безопасное проведение работ

3. Место дисциплины в структуре образовательной программы ВО

Дисциплина «**Химические реакторы**» входит в вариативную часть дисциплин.

Требования к «входным» знаниям, умениям и компетенциям студента.

Студент должен знать:

- общие закономерности химических процессов и основы теории процесса в химическом реакторе;
- методологию исследования взаимодействия процессов химического превращения и явлений переноса на всех масштабных уровнях;
- основные законы и определения общей, неорганической и органической химии;
 - механизмы ядерных реакций;
 - методику выбора оборудования и расчета процесса в нем.

Студент должен уметь:

- рассчитывать основные характеристики химического процесса;
- определить оптимальные и рациональные технологические режимы работы оборудования.

Общая трудоемкость дисциплины составляет 5 зачетных единиц.

Виды учебной работы	Всего	Семестр
-	часов	9
25	акад.	акад.
Общая трудоемкость дисциплины	180	180
Контактная работа, в т.ч.	63,6	63,6
аудиторные занятия:		·
Лекции	30	30
Лабораторные работы	15	15
Практические работы	15	15
Консультации текущие	1,5	1,5
Зачет	0,1	0,1
Курсовой проект	2	2
Виды аттестации зачет	зачет	зачет
Самостоятельная работа:	116,4	116,4
Проработка материалов по конспекту лекций (собеседование, тестирование, решение кейс-заданий)	15	15
Проработка материалов по учебным пособиям (собеседование, тестирование, решение кейс-заданий, доклад),	67,4	67,4
Подготовка к защите лабораторных работ (собеседование, тестирование, решение кейс-заданий)	12	12
Оформление отчетов по лабораторным работам	12	12
Курсовой проект	10	10

5 Содержание дисциплины, структурированное по разделам с указанием отведенного на них количества академических часов и видов учебных занятий

5.1 Содержание разделов дисциплины

Nº ⊓/⊓	Наименование раздела дисциплины	Содержание раздела (указывается в дидактических единицах)	Трудоемкость раздела, час
1	Общие сведения о химических реакторах. Химические реакторы с идеальной и неидеальной структурой потоков.	Моделирование химических реакторов и протекающих в них химических процессов. Структура математической модели химического реактора. Уравнение материального баланса для элементарного объема проточного химического реактора. Классификация химических реакторов и режимов их работы Реактор идеального вытеснения. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения. Каскад реакторов идеального смешения. Причины отклонений от идеальности в проточных реакторов с неидеальной структурой потоков.	102,2

2	Проточные	Функция распределения времени	74,2
-	реакторы.	пребывания. Экспериментальное изучение	,
	Теплоперенос в	функции распределения. Функции	
	химических	распределения времени пребывания	
	реакторах.	идеальных и неидеальных проточных	
	Промышленные	реакторов. Применение функций	
	химические	распределения времени пребывания при	
	реакторы.	расчете химических реакторов.	
		Уравнение теплового баланса. Тепловые	
		режимы химических реакторов. Проточный	
		реактор идеального смешения в	
		изотермическом режиме. Периодический	
		реактор идеального смешения в	
		неизотермическом режиме. Реактор	
		идеального вытеснения в	
		неизотермическом режиме. Оптимальный	
		температурный режим и способы его	
		осуществления в промышленных	
		реакторах.	
		Реакторы для гомогенных процессов.	
		Реакторы для гетерогенных процессов с	
		твердой фазой. Реакторы для	
		газожидкостных процессов. Реакторы для	
		гетерогенных каталитических процессов.	

5.2 Разделы дисциплины и виды занятий

Nº	Наименование раздела дисциплины	Лекции,	ЛР,	П3,	CPO,
п/п	талитопованию раскова дисципалить	час	час	час	час
1	Общие сведения о химических реакторах. Химические реакторы с идеальной и неидеальной структурой потоков.	16	8	8	70,2
2	Проточные реакторы. Теплоперенос в химических реакторах. Промышленные химические реакторы.	14	7	7	46,2

5.2.1 Лекции

№ п/п	Наименование тем раздела дисциплины	Тематика лекционных занятий	Трудоемкость, Час
1	Общие сведения о химических реакторах. Химические реакторы с идеальной и неидеальной структурой потоков.	Моделирование химических реакторов и протекающих в них химических процессов. Структура математической модели химического реактора.	4
		Уравнение материального баланса для элементарного объема проточного химического реактора. Классификация химических реакторов и режимов их работы Реактор идеального смешения. Реактор идеального вытеснения.	4
		Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения. Каскад реакторов идеального смешения.	4

		Причины отклонений от идеальности в проточных реакторах. Характеристики реакторов с неидеальной структурой потоков. Модели реакторов с неидеальной структурой потоков.	4
2	Проточные реакторы. Теплоперенос в химических реакторах. Промышленные химические реакторы.	Функция распределения времени пребывания. Экспериментальное изучение функции распределения. Функции распределения времени пребывания идеальных и неидеальных проточных реакторов. Применение функций распределения времени пребывания при расчете химических реакторов.	4
		Уравнение теплового баланса. Тепловые режимы химических реакторов. Проточный реактор идеального смешения в изотермическом режиме. Периодический реактор идеального смешения в неизотермическом режиме. Реактор идеального вытеснения в неизотермическом режиме. Оптимальный температурный режим и способы его осуществления в промышленных реакторах. Уравнение теплового баланса. Тепловые режимы химических реакторов. Проточный реактор идеального смешения в изотермическом режиме.	6
		Периодический реактор идеального смешения в неизотермическом режиме. Реактор идеального вытеснения в неизотермическом режиме. Оптимальный температурный режим и способы его осуществления в промышленных реакторах.	4

5.2.2 Практические занятия (семинары)

Nº	Наименование раздела	Тематика практических занятий	Трудоемкость,
п/п	дисциплины	(семинаров)	час
		Общие закономерности химических процессов.	2
	Общие сведения о химических	Вычисление качественных и количественных критериев оценки эффективности химического процесса, протекающего в аппарате.	2
'	реакторах. Химические реакторы с идеальной и неидеальной структурой потоков.	Моделирование реакторов идеального смешения периодического действия.	2
		Моделирование реакторов идеального вытеснения Моделирование проточных реакторов идеального смешения.	2

2	Проточные реакторы. Теплоперенос в химических реакторах. Промышленные химические реакторы.	Моделирование реакторов в неизотермическом режиме.	7
---	--	---	---

5.2.3 Лабораторный практикум

Nº ⊓/⊓	Наименование раздела дисциплины	Наименование лабораторных работ	Трудоемкость, час
1	Общие сведения о химических реакторах. Химические реакторы с идеальной и неидеальной структурой потоков.	Реактор периодического действия. Каскад реакторов смешения непрерывного действия. Экспериментальное исследование работы реактора вытеснения.	8
2	Проточные реакторы. Теплоперенос в химических реакторах. Промышленные химические реакторы.	Сравнение эффективности работы проточных реакторов, описываемых различными моделями в изотермическом режиме по производительности (интенсивности) их работы. Сравнение эффективности работы проточных реакторов, описываемых различными моделями, в изотермическом режиме по селективности процесса получения целевого продукта (по выходу продукта).	7

5.2.4 Самостоятельная работа обучающихся (СРО)

№ п/п	Наименование раздела	Вид СРО	Трудоемкость, час
1	дисциплины Общие сведения о химических реакторах. Химические реакторы с идеальной и неидеальной структурой потоков.	Проработка материалов по конспекту лекций (собеседование, тестирование, решение кейсзаданий). Проработка материалов по учебным пособиям (собеседование, тестирование, решение кейсзаданий, доклад). Подготовка к защите лабораторных работ (собеседование, тестирование, решение кейсзаданий). Оформление отчетов по лабораторным работам. Курсовой проект.	70,2
2	Проточные реакторы. Теплоперенос в химических реакторах. Промышленные химические реакторы.	Проработка материалов по конспекту лекций (собеседование, тестирование, решение кейсзаданий). Проработка материалов по учебным пособиям (собеседование, тестирование, решение кейсзаданий, доклад). Подготовка к защите лабораторных работ (собеседование, тестирование,	46,2

решение кейс-заданий).	
Оформление отчетов по	
лабораторным работам.	
Курсовой проект.	

6 Учебно-методическое и информационное обеспечение дисциплины 6.1 Основная литература

- 1. Углев Н.П. Теория химических реакторов. Введение в основные разделы курса [Текст] / Н.П.Углев Пермь, Изд-во ПГТУ, 2008.-183 с.
- 2. Гумеров А. М. Математическое моделирование химико-технологических процессов [Текст]: / А. М. Гумеров СПб.: Изд-во Лань, 2014. 174 с.

6.2 Дополнительная литература:

- 1. Калекин В. С. Тепломассообменное и реакционное оборудование химических производств [Текст] / В. С. Калекин, В. А. Плотников Омск : Изд-во ОмГТУ, 2013. 176 с.
- 2. Холоднов В.А. Математическое моделирование и оптимизация химикотехнологических процессов. Практическое руководство [Текст] / В.А. Холоднов, В.П. Дьяконов СПб.: Изд-во АНО НПО «Профессионал», 2003.- 480 с.
- 3. Известия высших учебных заведений. Химия и химическая технология: научно-технический журнал [Текст] / Иваново, 2010-2017 г.

6.3 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся

Методические указания к выполнению самостоятельной работы по дисциплине «Химические реакторы» [Электронный ресурс]: С.И. Нифталиев, Л.В. Лыгина; ВГУИТ, Кафедра неорганической химии и химической технологии. - Воронеж: ВГУИТ, 2019. - 14 с.

http://biblos.vsuet.ru/MegaPro/Web/SearchResult/MarcFormat/97008

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

p ,	
Наименование ресурса сети «Интернет»	Электронный адрес ресурса
«Российское образование» - федеральный	https://www.edu.ru/
портал	
Научная электронная библиотека	https://elibrary.ru/defaultx.asp?
Национальная исследовательская	https://niks.su/
компьютерная сеть России	
Информационная система «Единое окно	http://window.edu.ru/
доступа к образовательным ресурсам»	
Электронная библиотека ВГУИТ	http://biblos.vsuet.ru/megapro/web
Сайт Министерства науки и высшего	https://minobrnauki.gov.ru/
образования РФ	
Портал открытого on-line образования	https://npoed.ru/
Электронная информационно-	https://education.vsuet.ru/
образовательная среда ФГБОУ ВО	
«ВГУИТ»	

6.5 Методические указания для обучающихся по освоению дисциплины

1. Освоение закрепленных за дисциплиной компетенций осуществляется посредством изучения теоретического материала на лекциях, выполнения лабораторных работ. Учебно-методический комплекс дисциплины размещен в Электронной информационно-образовательной среде ВГУИТ http://education.vsuet.ru/course/view.php?id=859.

- 2. Самостоятельная работа студентов предполагает работу с отечественной литературой, учебниками, конспектами лекций, учебно-методическими материалами к лабораторным работам по алгоритму, детально изложенному в Методических указаниях к выполнению самостоятельной работы по дисциплине «Химические реакторы» [Электронный ресурс]: С.И. Нифталиев, Л.В. Лыгина;; ВГУИТ, Кафедра неорганической химии и химической технологии. Воронеж: ВГУИТ, 2019, размещенных в Электронной информационно-образовательной среде ВГУИТ http://education.vsuet.ru/course/view.php?id=859. Контроль выполнения самостоятельной работы осуществляется в виде тестирования.
- 3. Данылив, М. М. Методические указания для обучающихся по освоению дисциплин (модулей) в ФГБОУ ВО ВГУИТ [Электронный ресурс]: методические указания для обучающихся на всех уровнях высшего образования / М. М. Данылив, Р. Н. Плотникова; ВГУИТ, Учебно-методическое управление. Воронеж : ВГУИТ, 2016. 32 с.

http://biblos.vsuet.ru/MegaPro/Web/SearchResult/MarcFormat/100813

6.6 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Используемые виды информационных технологий:

- «электронная»: персональный компьютер и информационно-поисковые (справочно-правовые) системы;
- «компьютерная» технология: персональный компьютер с программными продуктами разного назначения (ОС Windows; MSOffice; КОМПАС-График; СПС «Консультант плюс»);
 - «сетевая»: локальная сеть университета и глобальная сеть Internet.
- тестовые задания в Электронной информационно-образовательной среде ВГУИТ http://education.vsuet.ru/.
- 1. Тестовые задания в Электронной информационно-образовательной среде ВГУИТ http://education.vsuet.ru/.
- 2. Microsoft Windows XP; Microsoft Windows 2008 R2 Server; Microsoft Office 2007 Professional 07.
- 3. Информационная справочная система. Портал фундаментального химического образования ChemNet. Химическая информационная сеть: Наука, образование, технологии http://www.chemnet.ru
 - 4. Базы данных по химии http://chemister.ru/Links/database.htm
 - 5. Отечественные базы данных по химии

http://www.chem.msu.su/rus/library/rusdbs.html

6. Химия. Базы данных.

http://elementy.ru/catalog/t39/Khimiya/g29/bazy_dannykh

7 Материально-техническое обеспечение дисциплины

- 1. Лекционная аудитория № 020 кафедры неорганической химии и химической технологии, оснащенная мультимедийной техникой: Мультимедийный проектор Ben Q MW 519; Сетевой коммутатор для подключения к компьютерной сети (Интернет);
- 2. Аудитории № 029, 027, 022 кафедры неорганической химии и химической технологии с необходимым оборудованием для проведения лабораторных работ:
 - рН-метр РНер-4,
 - электролизер,
 - экстрактор,

- ионообменные колонны,
- гальванометр, источник питания постоянного тока Б5.30/3, электроды,
- дифференциальный теплопроводящий микрокалориметр МИД 200,
- аналитические весы ВЛР 200,
- технические весы NKS 1008,
- наборы химической посуды и реактивов для выполнения лабораторного практикума.
- наборы для демонстрационных опытов: гальванический элемент, химическое равновесие, электролиты и др.
- 3. Таблицы:
- 3.1. Периодическая система элементов Д. И. Менделеева
- 3.2. Электроотрицательность элементов
- 3.3. Таблица растворимости кислот, оснований, солей
- 3.4. Стандартные электродные потенциалы металлов
- 3.5. Плакаты по свойствам атомов химических элементов.
- 4. Модели пространственного строения молекул и кристаллических решеток.
- 5. Демонстрационные опыты на лекциях по каждой теме.
- 6. Коллекция природных минералов, образцов простых и сложных веществ по каждой группе периодической системы химических элементов.
- 7. Аппаратура, применяемая для НИРС: криоскоп Testo 735-2, потенциостатический комплекс IPC Compact, аналитические весы WA 34 TYP PRLT A-14, термоанализатор STA 409 LUXX фирмы NETZSCH, семисекционная электродиализная ячейка с платиновым анодом и катодом, мультисенсорная пьезокварцевая ячейка детектирования.
- коллективного «Контроль Центр пользования И управление энергоэффективных проектов», оснащенные специализированной мебелью для химической посудой; весами техническими - WS-23.; аналитическими ВЛР-200,WA-34; иономером U-130; термостатом термометром Testo; pH-метром PHep-4; Колориметром КФК-2, КФК-2МП; микрокалориметром МИД-200; вольтметрами цифровыми – Щ68003; рН-метрами 121, 340; шкафом сушильным 2В-151; акводистиллятором ДЭ-15; прибором синхронного термического анализа STA, химический реактор лабораторный высокого давления Top Plus.
- 9. Аудитория № 39 кафедры неорганической химии и химической технологии для самостоятельной работы, оснащенная комплектами мебели для учебного процесса, компьютерами со свободным доступом в Интернет.

8 Оценочные материалы для промежуточной аттестации обучающихся по дисциплине

- 8.1 Оценочные материалы (ОМ) для дисциплины включают в себя:
- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

8.2 Для каждого результата обучения по дисциплине определяются показатели и критерии оценивания сформированности компетенций на различных этапах их формирования, шкалы и процедуры оценивания.

OM представляются отдельным комплектом и входят в состав рабочей программы дисциплины.

Оценочные материалы формируются в соответствии с П ВГУИТ 2.4.17-2017 «Положение об оценочных материалах».

Документ составлен в соответствии с требованиями ФГОС ВО по специальности 18.05.02 Химическая технология материалов современной энергетики, специализация № 3 "Технология теплоносителей и радиоэкология ядерных энергетических установок".

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Химические реакторы» (наименование дисциплины)

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- способностью самостоятельно выполнять исследования с использованием современной аппаратуры и методов исследования в области объектов профессиональной деятельности, проводить корректную обработку результатов и устанавливать адекватность моделей (ПК-10);
- готовность использовать методы оценки риска и разрабатывать меры по обеспечению безопасности разрабатываемых новых технологий обращения с объектами профессиональной деятельности (ПК-11).

В результате освоения дисциплины обучающийся должен:

Знать

- методику выбора реактора и расчета процесса; теорию химических процессов, протекающих в реакторах;
- основы теории процесса в химическом реакторе, реакционные процессы и реакторы ядерной отрасли.

Уметь

- выбирать тип реактора и выполнять расчет технологических параметров;
- определять оптимальные параметры процесса в химическом реакторе.

Владеть

- методами расчета и анализа процессов в химических реакторах;
- методами выбора химических реакторов, обеспечивающих безопасное проведение работ

Содержание разделов дисциплины.

Моделирование химических реакторов и протекающих в них химических процессов. Структура математической модели химического реактора. Уравнение материального баланса для элементарного объема проточного химического реактора. Классификация химических реакторов и режимов их работы. Реактор идеального смешения. Реактор идеального вытеснения. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения. Каскад реакторов идеального смешения. Причины отклонений от идеальности в проточных реакторах. Модели реакторов с неидеальной структурой потоков. Функция распределения времени пребывания. Экспериментальное изучение функции распределения. Функции распределения времени пребывания идеальных и неидеальных проточных реакторов. Применение функций распределения времени пребывания при расчете химических реакторов. Уравнение теплового баланса. Тепловые режимы химических реакторов. Проточный реактор идеального смешения в режиме. изотермическом Периодический реактор идеального смешения неизотермическом режиме. Реактор идеального вытеснения в неизотермическом режиме. Оптимальный температурный режим и способы его осуществления в промышленных реакторах. Реакторы для гомогенных процессов. Реакторы для гетерогенных процессов с твердой фазой. Реакторы для газожидкостных процессов. Реакторы для гетерогенных каталитических процессов.