МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНЫХ ТЕХНОЛОГИЙ»

УТВЕРЖДАЮ

И.о. проректора по учебной работе

______Василенко В.Н. (подпись) (Ф.И.О.) «30» мая 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Современные программные средства моделирования и управления_

Направление подготовки

15.04.04 Автоматизация технологических процессов и производств

Направленность (профиль) подготовки

_Автоматизация технологических процессов и производств (по отраслям)

Квалификация (степень) выпускника **Магистр**

Воронеж

1. Цели и задачи дисциплины

Цель освоения дисциплины «Современные программные средства модели- рования и управления» - является формирование компетенций обучающегося в области профессиональной деятельности и сферы профессиональной деятельности, в которых выпускники, освоившие программу магистратуры, могут осуществлять профессиональную деятельность: 40 Сквозные виды профессиональной деятельности в промышленности (в сфере автоматизации и механизации производственных процессов)

В рамках освоения программы магистратуры выпускники могут готовиться к решению задач профессиональной деятельности следующих типов:

- проектно-конструкторской;
- производственно-технологической;
- научно-исследовательской;
- сервисно-эксплуатационной.

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.04.04 Автоматизация технологических процессов и производств

2. Перечень планируемых результатов обучения, соотнесенных с планируемыми результатами освоения образовательной программы

№ п/п	Код компе- тенции	Формулировка компетенции	Код и наименование индикатора достижения компетенции
1	ПКв-4	Разработка новых техно- логий и средств механи- зации, автоматизации и роботизации промышлен- ных линий по производ- ству пищевой продукции	ИД-1 _{ПКВ-4} — Организует и проводит экспериментальные исследования на действующих мехатронных и робототехнических системах с целью определения их эффективности и определения путей совершенствования механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции ИД-2 _{ПКВ-4} — Составляет описание принципов действия и конструкции устройств, проектируемых технических средств и систем механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции ИД-3 _{ПКВ-4} — Разрабатывает алгоритмическое и программное обеспечение средств и систем механизации, автоматизации и роботизации промышленных линий по производств пищевой продукции

Результаты обучения (показатели оценивания)
Знает: мехатронные и робототехнические системы
Умеет: организовать и проводить экспериментальные исследования на действующих мехатронных и робототехнических системах
Владеет: навыками определения эффективности мехатронных и робототехнических систем и определения путей совершенствования механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции
Знает: принципы действия и конструкции устройств технических средств и систем автоматизации и роботизации
Умеет: проектировать технические средства и системы механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции
Владеет: навыками составления описания принципов действия и конструкции устройств, проектируемых технических средств и систем механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции
Знает: алгоритмическое и программное обеспечение средств и систем механизации, автоматизации и роботизации
Умеет: разрабатывать алгоритмическое и программное обеспечение средств и систем механизации, автоматизации и роботизации
Владеет: навыками разработки алгоритмического и программного обеспечения средств и систем автоматизации и роботизации промышленных линий по производств пищевой продукции

3. Место дисциплины в структуре образовательной программы ВО

Дисциплина «Современные программные средства моделирования и управления» относится к обязательной частим, формируемой участниками образовательных отношений Блока 1 ООП, части, формируемая участниками образовательных отношений. Дисциплина является обязательной к изучению.

Изучение дисциплины «Современные программные средства моделирования и управления» основано на знаниях, умениях и навыках, полученных при изучении обучающимися следующих дисциплин и практик:

Интегрированные системы проектирования и управления автоматизированных и автоматических производств;

Проектирование систем автоматизации и управления;

Системный анализ и моделирование;

Учебная практика, ознакомительная практика.

Дисциплина «Современные программные средства моделирования и управления» читается в последнем семестре обучения, используется при выполнении выпускной квалификационной работы и освоения практик:

Производственная практика, технологическая (проектно-технологическая) практика;

Производственная практика, научно-исследовательская работа;

Производственная практика, эксплуатационная практика.

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5 зачетных единиц.

Виды учебной работы	Всего часов	Семестр
		3
	акад.	акад.
Общая трудоемкость дисциплины	180	180
Контактная работа, в т.ч. аудиторные занятия:	50,8	50,8
Лекции	12	12
Лабораторный практикум (ЛП)	24	24
в том числе в форме практической подготовки	24	24
Практические занятия (ПР)	12	12
в том числе в форме практической подготовки	12	12
Консультации текущие	0,6	0,6
Консультация перед экзаменом	2	2
Виды аттестации (экзамен)	0,2	0,2
Самостоятельная работа:	95,4	95,4
Проработка материалов по конспекту лекций (собе-	6	6
седование, тестирование, решение кейс-заданий,		
задач)		
Проработка материалов по учебнику (собеседова-	16	16
ние, тестирование, решение кейс-заданий, задач)		
Расчеты в среде математических пакетов ЭВМ	61,4	61,4
Оформление текста отчета по лабораторной и прак-	12	12
тической работе		
Контроль	33,8	33,8

5 Содержание дисциплины, структурированное по разделам с указанием отведенного на них количества академических часов и видов учебных занятий

5.1 Содержание разделов дисциплины

Nº ⊓/⊓	Наименование раздела дисциплины	Содержание раздела (указываются темы и дидактические единицы)	Трудоемкость раздела ак. ч в традиционной форме
		3 семестр	
1.	Применение САПР	Введение. Основные понятия и определения. Системный подход к проектированию. САПР и их место среди других автоматизированных систем. Примеры САПР. CALS-технологии. Системы управления в составе комплексных автоматизированных систем	18
2.	Виды обеспечения САПР	Техническое обеспечение САПР. Математическое обеспечение САПР. Программное, информационное, лингвистическое, организационное и методическое обеспечение САПР	30
	Консул	пьтации текущие	0,6
	Консульта	2	
		0,2	

5.2 Разделы дисциплины и виды занятий

	от табрити диодинини.		ции, ак. ч	Пран	стиче-	CPO,
	Ноимонования воздала лиони			ские/лабораторные заня-		ак. ч
Nº				тия,	ак. ч	
П/П	Наименование раздела дисци- плины	в тради-	в форме	в традици-	в форме	
11/11	ПЛИПЫ	ционной	практической	онной	практиче-	
		форме	подготовки	форме	ской подго-	
					товки	
1	Применение САПР	6		12/	12/	41
2	Виды обеспечения САПР	6		/24	/24	54,4
	Консультации текущие			0,6		
	Консультация перед экзаменом	2				
	Экзамен	0,2			·	

5.2.1 Лекции

	№ п/п	Наименование раздела дисципли- ны	Тематика лекционных занятий	Трудоемкость, час в традицион- ной форме
Ī	1	Применение САПР		6
		Введение. Основные понятия и определения. Системный подход к проектированию	Предмет дисциплины и ее задачи. Роль систем автоматизированного проектирования при разработке средств управления, СУ и АСУ ТП. Основные стандарты и нормативные документы автоматизации проектирования. Понятие инженерного проектирования. Принципы системного подхода. Примеры сложных систем.	2
		САПР и их место среди других автоматизированных систем Примеры САПР	Структура системы автоматизированного проектирования (САПР) СУ. Обеспечение САПР (техническое, математическое, программное, ин-	2

			T
		формационное, лингвистическое,	
		методическое, организационное).	
		Функции, характеристики и примеры	
		CAE/CAD/CAM-систем.	
		Сквозные САПР. «Тяжелые», «лег-	
		кие» и среднемасштабные системы.	
		САПР. Тенденции и направления	
		развития САПР в России. Компании-	
		лидеры на рынке САПР.	
	CALS-технологии. Системы управ-	Понятие о CALS-технологии. Вирту-	2
	ления в составе комплексных ав-	альные производства. Комплексные	
	томатизированных систем	автоматизированные системы. АСУП	
		и АСУТП. SCADA-системы. Автома-	
		тизированные системы делопроиз-	
		водства.	
2	Виды обеспечения САПР		6
	Техническое обеспечение САПР	Классификация технических средств	2
		САПР. Организация технических	
		средств САПР в виде локальной вы-	
		числительной сети. Эталонная мо-	
		дель взаимосвязи открытых систем.	
		Особенности технических средств в	
		АСУТП. Аппаратное обеспечение	
		электронного конструкторского доку-	
		ментооборота.	
	Математическое обеспечение	Требования, предъявляемые к ма-	2
	САПР.	тематическим моделям (адекват-	
		ность, точность, экономичность, уни-	
		версальность). Модели микроуровня,	
		макроуровня, функционально-	
		логического уровня. Математическое	
		обеспечение анализа проектных ре-	
		шений, подсистем машинной графи-	
		ки и геометрического моделирования	
	Программире и информационное	Состав и функции опошиол ного по	1
	Программное и информационное обеспечение САПР	Состав и функции специального про-	'
	OUGUIGAGHNG CALIF	граммного обеспечения САПР. Об-	
		щесистемное ПО и прикладное (спе-	
		циальное) ПО. Операционные си-	
		стемы, используемые в САПР,	
		предоставляемые ими возможности.	
		ПО типовых телекоммуникационных	
		услуг. Специфика прикладного ПО САПР.	
		Назначение ИО САПР. Требования к	
		ИО САПР. Состав ИО САПР. Осо-	
		бенности информационного обеспе-	
		чения САПР СУ. Входная и выходная	
		информация при проектировании.	
		Использование систем управления	
	D	базами данных при проектировании.	_
	Лингвистическое, организационное	Общие сведения о лингвистическом	1
	и методическое обеспечение САПР	обеспечении САПР. Языки програм-	
		мирования, управления, проектиро-	
		вания. Основные свойства языков	
		проектирования. Примеры объектно-	
		ориентированных языков проектиро-	
		вания СУ: MATHEMATICA, MATLAB,	
		SIMULINC, SCADA-системы и т.д.	
		Преобразование информации в	
		САПР. Особошности, формовически	
		САПР. Особенности формализации	<u> </u>

информации в САПР.	
Определение, назначение и состав	
организационного и методического	
обеспечения САПР. Отраслевые и	
государственные стандарты, опре-	
деляющие и регламентирующие как	
создание, так и порядок использова-	
ния САПР.	

5.2.2 Практические занятия (ПЗ)

	LELE TIPAKTY TOOKING SATISTIASI (I	<u>,</u>	
Nº	Наименование раздела	Томотико проктиноских запатий	Трудоемкость, час
п/п	дисциплины	дисциплины Тематика практических занятий	в традицион- ной форме
	Применение САПР	Параметрическая идентификация математической модели зависимости показателей качества от параметров синтеза полимера	2
		Параметрическая идентификация математической модели кинетики процесса полимеризации стирола	2
		Моделирование реактора периодиче- ского действия в производстве низко- молекулярных каучуков	2
		Математическое моделирование процессов полимеризации в производстве каучука ДСТ периодическим способом	4
		Математическое моделирование процесса полимеризации бутадиена в присутствии нормального литийбутила в производстве каучука СКД-Л250	2

5.2.3 Лабораторный практикум (ЛП)

Nº	Наименование раздела дисципли-	Нашили поборотории у робот	Трудоемкость, час
п/п	ны	Наименование лабораторных работ	в традицион- ной форме
1.	Виды обеспечения САПР	Знакомство с инструментарием САПР Simulink	4
		Моделирование замкнутой системы регулирования и подбор настроек ПИрегулятора с помощью САПР Simulink	4
		Моделирование нелинейных объектов регулирования с помощью САПР Simulink	4
		Построение математических моделей динамических систем средствами САПР Simulink. Редактор дифференциальных уравнений DEE	4
		Моделирование объектов с распределенными параметрами с помощью САПР Simulink. Моделирование процесса при неизменной скорости подачи продукта.	4
		Построение математических моделей динамических систем и автоматизированный синтез законов управления средствами САПР Simulink. Пакет Nonlinear Control Design (NCD). При-	4

мер моделирования и оптимизации коэффициента передачи И- регулятора	

5.2.4 Самостоятельная работа студентов (СРО)

Nº п/п	Наименование раз- дела дисциплины	Вид СРО	Трудоемкость, ак. Ч
_		Проработка материалов по лекциям, учебникам, учебным пособиям	3
'	Применение САПР	Проработка материалов по учебнику	8
	-	Подготовка к практическим/лабораторным занятиям	30,7
		Оформление текста отчета по лабораторной работе	6
	Виды обеспечения САПР	Проработка материалов по лекциям, учебникам, учебным пособиям	3
2		Проработка материалов по учебнику	8
		Подготовка к практическим/лабораторным занятиям	30,7
		Оформление текста отчета по лабораторной работе	6

6 Учебно-методическое и информационное обеспечение дисциплины

6.1 Основная литература:

- 1. Смоленцева, Т. Е. Системный анализ и моделирование: Методические указания : методические указания / Т. Е. Смоленцева. — Москва : РТУ МИРЭА, 2020. — 36 с. электронно-библиотечная Текст: электронный // Лань система. URL: https://e.lanbook.com/book/163927
- 2. Кудряшов, В. С. Методы синтеза цифровых систем управления многосвязными технологическими объектами: монография / В. С. Кудряшов, С. В. Рязанцев, А. В. Иванов. — Воронеж : ВГУИТ, 2018. — 333 с. — ISBN 978-5-00032-303-8. — Текст : электронэлектронно-библиотечная ный // URL: Лань система. https://e.lanbook.com/book/106907

6.2 Дополнительная литература:

1. Лисин, П. А. Компьютерное моделирование производственных процессов в пищевой промышленности / П. А. Лисин. — 3-е изд., стер. — Санкт-Петербург : Лань, 2023. — 256 с. — ISBN 978-5-507-47265-9. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/351779

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Ин-

тернет», необходимых для освоения дисциплины (модуля)

rophor, hodoxodumpix din dopodini duodini mini (modini)		
Наименование ресурса сети «Интернет»	Электронный адрес ресурса	
Научная электронная библиотека	http://www.elibrary.ru/defaulttx.asp	
Образовательная платформа «Юрайт»	https://urait.ru/	
ЭБС «Лань»	https://e.lanbook.com/	
АИБС «МегаПро»	https://biblos.vsuet.ru/MegaPro/Web	
Сайт Министерства науки и высшего образования РФ	http://minobrnauki.gow.ru	
Электронная информационно-образовательная среда ФГБОУ ВО «ВГУИТ	http://education.vsuet.ru	

6.5 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем

При изучении дисциплины используется программное обеспечение, современные профессиональные базы данных и информационные справочные системы: ЭИОС университета, в том числе на базе программной платформы «Среда электронного обучения 3KL».

При освоении дисциплины используется лицензионное и открытое про-

граммное обеспечение		
Программы	Лицензии, реквизиты подтверждающего документа	
Adobe Reader XI	(бесплатное ПО)	
	https://acrobat.adobe.com/ru/ru/acrobat/pdf-reader/volume-distribution.html	
Альт Образование	Лицензия № ААА.0217.00	
	с 21.12.2017 г. по «Бессрочно»	
Microsoft Windows 8	Microsoft Open License	
Microsoft Windows 8.1	Microsoft Windows Professional 8 Russian Upgrade Academic OPEN 1 License No Level#61280574 οτ 06.12.2012 г.	
	https://www.microsoft.com/ru-ru/licensing/licensing-programs/open-license	
Microsoft Office Professional	Microsoft Open License	
Plus 2010	Microsoft Office Professional Plus 2010 Russian Academic OPEN 1 License No	
	Level #48516271 от 17.05.2011 г. https://www.microsoft.com/ru-	
	ru/licensing/licensing-programs/open-license	
	Microsoft Open License	
	Microsoft Office Professional Plus 2010 Russian Academic OPEN 1 License No	
	Level #61181017 от 20.11.2012 г. https://www.microsoft.com/ru-	
	ru/licensing/licensing-programs/open-license	
Microsoft Office 2007	Microsoft Open License	
Standart	Microsoft Office 2007 Russian Academic OPEN No Level #44822753 οτ	
	17.11.2008https://www.microsoft.com/ru-ru/licensing/licensing-programs/open-	
	license	
Libre Office 6.1	Лицензия № ААА.0217.00	
	с 21.12.2017 г. по «Бессрочно» (Включен в установочный пакет операцион-	
	ной системы Альт Образование 8.2)	
KOMΠAC 3D LT v 12	(бесплатное ПО)	
	http://zoomexe.net/ofis/project/2767-kompas-3d.html	
T-FLEX CAD 3D Универси-	Договор № 74-B-TCH-3-2018 с ЗАО «ТОП СИСТЕМЫ» от 07.05.2018 г.	
тетская	Лицензионное соглашение № А00007197 от 22.05.2018 г.	
Компас 3D V21	Лицензионное соглашение с ЗАО «Аскон» № КАД-16-1380	
	Сублицензионный договор с ООО «АСКОН-Воронеж» от 09.02.2022 г.	
APM WinMachine	Лицензионное соглашение с ООО НТЦ «АПМ» № 105416 от	
	22.11.2016 г.	

Справочно-правовые системы

Программы Лицензии, реквизиты подтверждающего документа		Лицензии, реквизиты подтверждающего документа
Справочные пра- Договор о сотрудничестве с "Информсвязь-черноземье", Региональнальный и		Договор о сотрудничестве с "Информсвязь-черноземье", Региональнальный инфор-
	вовая система	мационный центр общероссийской сети распространения правовой информации
	«Консультант	Консультант Плюс
	Плюс»	№ 8-99/RD от 12.02.1999 г.

7 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения учебных занятий, в том числе в формате практической подготовки, включают:

Учебная аудитория 324. Комплект мебели для учебного процесса. Переносное оборудование: мультимедийный проектор NEC NP 100; Ноутбук Rover Book W 500L; экран.

Учебная аудитория № 319. Комплект мебели для учебного процесса. Компьютерный класс с персональными ЭВМ семейства IBM PC, установленные ОС семейства Microsoft Windows, пакет Microsoft Office, математические пакеты Mathcad и Matlab

Аудитории для самостоятельной работы обучающихся:

Читальные залы библиотеки: Компьютеры (30 шт.) со свободным доступом в сеть Интернет и Электронным библиотечным и информационно-справочным системам

8 Оценочные материалы для промежуточной аттестации обучающихся по дисциплине

Оценочные материалы (ОМ) для дисциплины включают в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- -типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы.
- -методические материалы, определяющий процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций.

ОМ представляются отдельным компонентом и **входят в состав рабочей программы дисциплины**.

Оценочные материалы формируются в соответствии с П ВГУИТ «Положение об оценочных средствах».

(обязательное)

ПРИЛОЖЕНИЕ к рабочей программе

1. Организационно-методические данные дисциплины для очно-заочной или заочной форм обучения

1.1 Объемы различных форм учебной работы и виды контроля в соответствии с учебным планом

Общая трудоемкость дисциплины (модуля) составляет __5_ зачетных единиц

Виды учебной работы	Всего часов	Семестр
		3
	акад.	акад.
Общая трудоемкость дисциплины	180	180
Контактная работа, в т.ч. аудиторные заня-	23,9	23,9
тия:		
Лекции	6	6
Лабораторный практикум (ЛП)	8	8
в том числе в форме практической подготовки	8	8
Практические занятия (ПР)	6	6
в том числе в форме практической подготовки	6	6
Консультации текущие	0,9	0,9
Консультация перед экзаменом	2	2
Виды аттестации (экзамен)	0,2	0,2
Рецензирование контрольных работ	0,8	0,8
Самостоятельная работа:	149,3	149,3
Проработка конспекта лекций	20	20
Проработка материала по учебникам	36	36
Подготовка к практическим и лабораторным заня-	93,3	93,3
МРИТ		
Контроль	6,8	6,8

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

по дисциплине

Современные программные средства моделирования и управлния

Перечень компетенций с указанием этапов их формирования

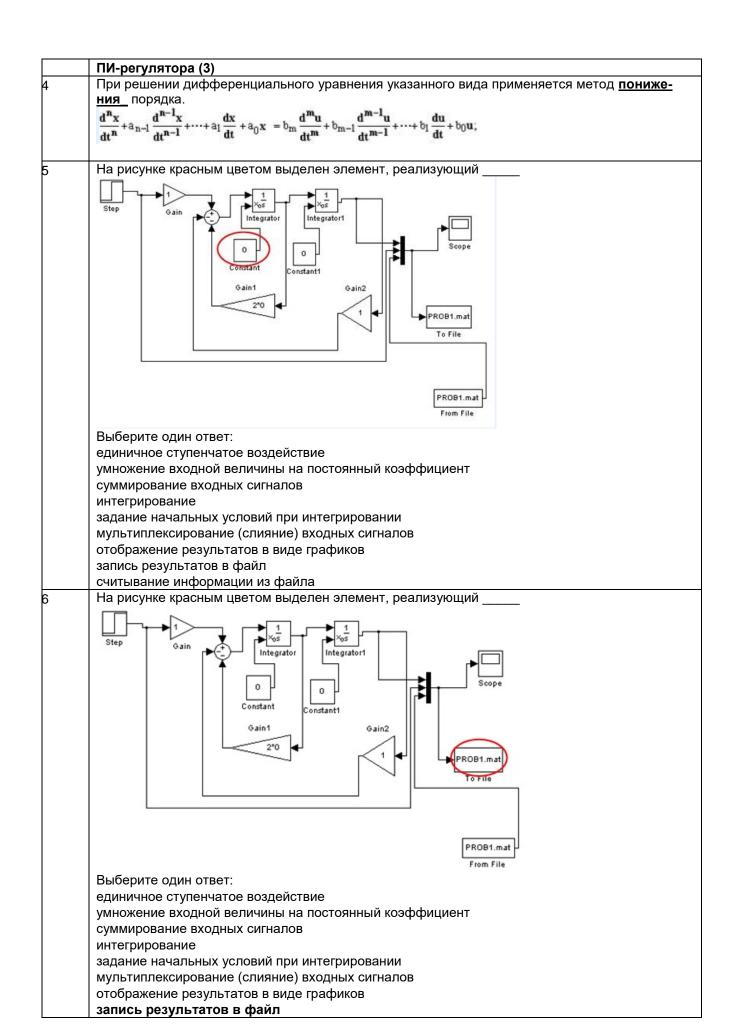
№ п/п	Код компе- тенции	Формулировка компетенции	Код и наименование индикатора достижения компетенции
1	ПКв-4	Разработка новых техно- логий и средств механи- зации, автоматизации и роботизации промышлен- ных линий по производ-	ИД-1 _{ПкВ-4} — Организует и проводит экспериментальные исследования на действующих мехатронных и робототехнических системах с целью определения их эффективности и определения путей совершенствования механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции
		ству пищевой продукции	ИД-2 _{ПкВ-4} — Составляет описание принципов действия и конструкции устройств, проектируемых технических средств и систем механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции
			ИД-3 _{ПКВ-4} — Разрабатывает алгоритмическое и программное обеспечение средств и систем механизации, автоматизации и роботизации промышленных линий по производств пищевой продукции

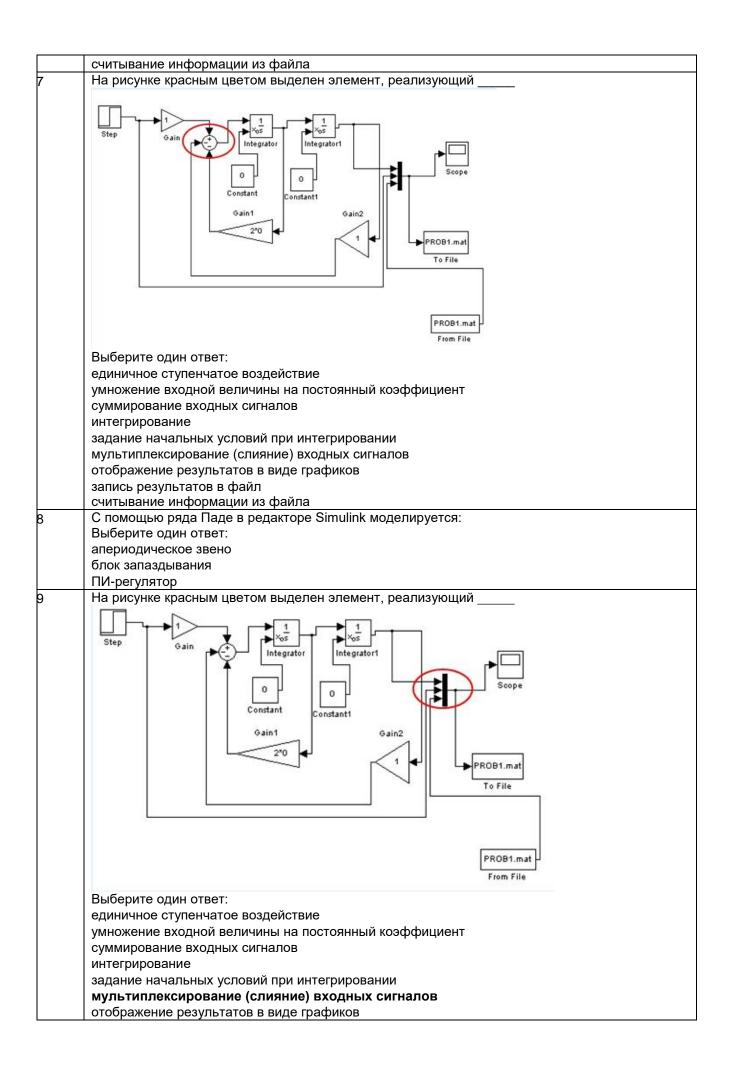
2 Паспорт оценочных материалов по дисциплине

Nº	Разделы	Индекс	Оценочные средств	Технология/процедура оценивания	
п/ п	дисциплины	контроли- руемой компе- тенции (или ее части)	наименование	№№ заданий	(способ контроля)
1	Применение САПР		Банк тестовых заданий	1-65	Бланочное или компьютерное те- стирование
		ПКв-4	Собеседование (вопросы к экзамену)	164-189	Контроль преподавателем
			Практические занятия <i>(собеседова-</i> ние)	105,106,172,173	Выполнение практических заданий
			Кейс-задание	131-144,158-160	Проверка преподавателем
2			Банк тестовых заданий	66-130	Бланочное или компьютерное те- стирование
	Виды обеспе-	ПКв-4	Собеседование (вопросы к экзамену)	190-224	Собеседование с преподавателем
	чения САПР	• •	Лабораторные работы (собеседование) (вопросы к защите лабораторных работ)	105,106,172,173	Защита лабораторных работ
			Кейс-задание	145-157, 161-163	Проверка преподавателем

3. Оценочные средства для промежуточной аттестации

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной

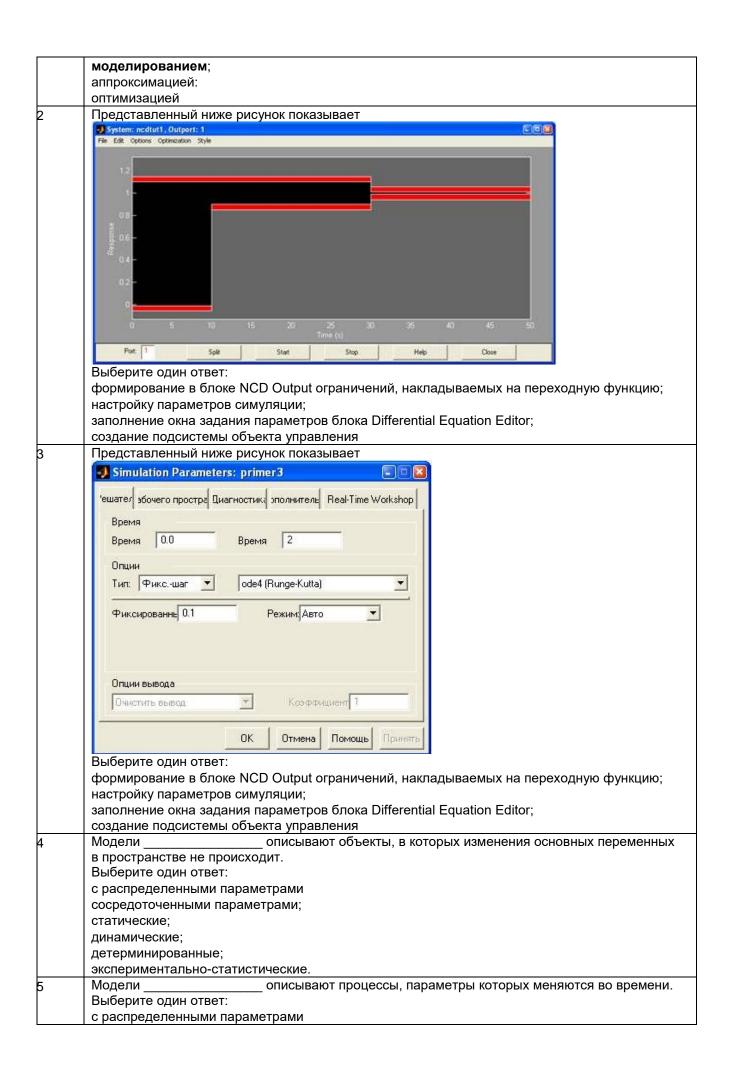

3.1 Тесты (тестовые задания)


3.1.1 ПКв-4 - Разработка новых технологий и средств механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции

№ за-	Тест (тестовое задание)		
дан			
ия			
	А (на выбор одного правильного ответа)		
	 свойство искусственной системы, выражающее назначение системы. 		
	целенаправленность;		
	целостность:		
	иерархичность		
,	совокупность значений фазовых переменных, зафиксированных в одной временной		
	точке процесса функционирования		
	параметр;		
	структура;		
	состояние;		
	фазовая переменная		
	Функции САD-систем:		
P	двухмерного (2D) проектирования (черчение, оформление конструкторской документации);		
	двухмерного (2D) проектирования (черчение, оформление конструкторской документации), трехмерного (3D) проектирования (получение трехмерных моделей, метрические расчеты,		
	трехмерного (3D) проектирования (получение трехмерных моделей, метрические расчеты, реалистичная визуализация, взаимное преобразование 2D и 3D моделей);		
	разработка технологических процессов;		
	синтез управляющих программ для технологического оборудования с числовым программным		
	управлением (ЧПУ);		
	моделирование процессов обработки, в том числе построение траекторий относительного		
	движения инструмента и заготовки в процессе обработки;		
	генерация постпроцессоров для конкретных типов оборудования с ЧПУ;		
	расчет норм времени обработки;		
	моделирование полей физических величин, в том числе анализ прочности;		
	расчет состояний и переходных процессов на макроуровне;		
	ј. имитационное моделирование сложных производственных систем на основе моделей		
	массового обслуживания и сетей Петри		
	Автоматизированная система (АС) должна создаваться с учетом возможности пополнения и		
	обновления функций и состава АС без нарушения её функционирования. Это принцип		
	системности;		
	открытости;		
	совместимости;		
	стандартизации;		
	эффективности		
	<u>Техническое</u> задание на создание автоматизированной системы (AC) – основной до-		
,			
	кумент, определяющий требования на порядок создания (развития или модерниза-		
	ции) АС и её приемки при вводе в действие		
5	Появление первых программ для автоматизации проектирования за рубежом и в СССР отно-		
	сится к началу XX века.		
	50-x гг;		
	60-х гг;		
	70-х гг.		
	обеспечение САПР выражается языками общения между проектировщиками и ЭВМ,		
	языками программирования и языками обмена данными между техническими средствами		
	САПР.		
	техническое;		
	математическое;		
	программное;		
	информационное;		

	лингвистическое;
	методическое;
	организационное.
3	обеспечение САПР представлено штатными расписаниями, должностными инструкция-
	ми и другими документами, регламентирующими работу проектного предприятия.
	техническое;
	математическое;
	программное;
	информационное;
	лингвистическое;
	методическое;
	организационное.
9	предназначены для обеспечения санкционированного доступа к документам.
	системы управления документами;
	системы управления документооборотом;
	системы управления знаниями;
	инструментальные среды в системах делопроизводства.
0	Проектирование, при котором все проектные решения получают без использования ЭВМ,
	называют
	автоматическим;
	ручным;
	автоматизированным
1	свойство искусственной системы, выражающее назначение системы.
	целенаправленность;
	целостность;
	иерархичность
2	обеспечение САПР включает различные методики проектирования, иногда к нему отно-
	сят также математическое обеспечение.
	техническое;
	математическое;
	программное;
	информационное;
	лингвистическое;
	методическое;
	организационное
3	_Система_ – множество элементов, находящихся в отношениях и связях между собой.
4	Под автоматизацией проектирования понимают систематическое применение ЭВМ в процессе
Γ	проектирования при научно обоснованном распределении функций между проектировщиком и
	ЭВМ и при научно обоснованном выборе <u>методов</u> машинного решения задачи.
5	свойство системы, характеризующее взаимосвязанность элементов и наличие зависи-
ľ	мости выходных параметров от параметров элементов, при этом большинство выходных па-
	раметров не является простым повторением или суммой параметров элементов.
	целенаправленность;
	целостность;
	иерархичность
6	При создании автоматизированной системы (АС) должны быть рационально применены типо-
	вые, унифицированные и стандартизованные элементы, проектные решения, пакеты приклад-
	ных программ, комплексы, компоненты. Это принцип
	системности;
	открытости;
	совместимости;
	стандартизации;
	эффективности
7	– отображение совокупности элементов системы и их взаимосвязей; принимают во вни-
	мание лишь типы элементов и связей без конкретизации значений их параметров.
	параметр;
	структура;
	состояние;
	фазовая переменная

8	Техническое задание на создание автоматизированной системы (AC) – основной документ, определяющий требования на порядок создания (развития или модернизации) АС и её приемки при вводе в действие.
9	Укажите по порядку основные стадии создания автоматизированной системы Формирование требований к АС; Разработка концепции АС
	Техническое задание;
	Эскизный проект;
	Технический проект;
	Рабочая документация;
	Ввод в действие;
	Сопровождение АС.
0	охватывают уровни от предприятия до цеха.
	автоматизированные системы управления предприятием (АСУП); автоматизированные системы управления технологическими процессами (АСУТП).
1	это системы, выполняющие функции, характерные для интеллектуальных систем.
'	системы управления документами;
	системы управления документооборотом;
	системы управления знаниями;
	инструментальные среды в системах делопроизводства.
2	Метод понижения порядка производной для дифференциального уравнения второго порядка
	включает следующие шаги:
	запишем исходное дифференциальное уравнение, чтобы высшая производная была слева, а все остальные слагаемые справа;
	с помощью интегратора получим значение первой производной;
	замкнем схемы, полученные ранее;
	установим начальные условия определяющие единственность решения дифферен-
	циального уравнения;
	согласно правой части уравнения с использованием сумматора получим вторую
	производную;
	с помощью интегратора получим значение искомой функции
3	На рисунке изображена блок-схема для моделирования в Simulink
	Step Oain Constant Oconstant Oain2
	$C_{1} \cdot \frac{dx}{dt} + x(t) = K \cdot u_{n}(t) $ $\mathbf{b}_{2} \frac{\mathbf{d}^{2} \mathbf{x}}{\mathbf{dt}^{2}} + \mathbf{b}_{1} \frac{\mathbf{dx}}{\mathbf{dt}} + \mathbf{b}_{0} \mathbf{x} = \mathbf{b}_{3} \mathbf{u_{n}}(t) $ (2)
	$\mathbf{y_{per}} = -\left(\mathbf{S_1}\Delta\mathbf{x} + \mathbf{S_0}\int_0^t \Delta\mathbf{x} \cdot d\mathbf{t}\right),\tag{3}$
	Выберите один ответ: объекта первого порядка (1) объекта второго порядка (2)



	запись результатов в файл
	считывание информации из файла Инструментарий Simulink пакета Matlab позволяет моделировать и исследовать поведение
b	инструментарии эппштк пакета машар позволяет моделировать и исследовать поведение систем, описываемых дифференциальными _уравнениями _
1	на рисунке изображена блок-схема для моделирования в Simulink
	Step 0.0017 Oain Oconstanti
	$C_{1} \cdot \frac{dx}{dt} + x(t) = K \cdot u_{n}(t) $ $\mathbf{b}_{2} \frac{\mathbf{d}^{2} \mathbf{x}}{\mathbf{d}t^{2}} + \mathbf{b}_{1} \frac{\mathbf{d}\mathbf{x}}{\mathbf{d}t} + \mathbf{b}_{0} \mathbf{x} = \mathbf{b}_{3} \mathbf{u}_{n}(t) $ $\mathbf{y}_{\mathbf{per}} = -\left(\mathbf{S}_{1} \Delta \mathbf{x} + \mathbf{S}_{0} \int_{0}^{t} \Delta \mathbf{x} \cdot \mathbf{d}t\right), $ (2) (3)
	Выберите один ответ:
	апериодическое звено (1)
	блок запаздывания (2)
	ПИ-регулятор (3)
	Возможность реализации математических моделей, системы поиска данных, работы с графическим изображением, выдачи результатов на технологическое оборудование это требования, предъявляемые к комплексу технических средств САПР. Выберите один ответ: системные; функциональные; технические; организационно-эксплуатационные
3	Языки САПР служат для управления ЭВМ, периферийными устройствами. Это операционная система Windows, драйверы принтеров и т.д. Выберите один ответ: программирования; управления;
	проектирования
4	программное обеспечение САПР служит для организации функционирования техниче- ских средств. Выберите один ответ: общесистемное; прикладное
5	К прикладному программному обеспечению САПР относят:
	Выберите один или несколько ответов: комплекс анализа прочности механических изделий в соответствии с методом конечных элементов; комплекс анализа электронных схем; операционные системы используемых ЭВМ и вычислительных систем; подсистемы машинной графики и геометрического моделирования;
	программно-методические комплексы имитационного моделирования производственных процессов; программно-методические комплексы расчета прочности по методу конечных элементов; программно-методические комплексы синтеза и анализа систем автоматического управления; сетевое программное обеспечение типовых телекоммуникационных услуг;
	подсистемы проектирования компонентов; подсистемы проектирования принципиальных, логических, функциональных схем; подсистемы проектирования топологии кристаллов;

	подсистемы тестов для проверки годности изделий.
6	Производительность, быстродействие, система кодирования информации, виды носителей
	данных это требования, предъявляемые к комплексу технических средств САПР.
	Выберите один ответ:
	системные;
	функциональные;
	технические;
	организационно-эксплуатационные
7	Установите соответствие физического смысла фазовых переменных типа U для различных
	физических систем
	Электрическая → Напряжение
	Механическая поступательная → Скорость
	Механическая упругая → Деформация
	Механическая вращательная → Угловая скорость
	Гидравлическая и пневматическая → Давление
	Тепловая→ Температура
	Выбрать из:
	Деформация
	Напряжение
	Давление
	Температура
	Угловая скорость
	Скорость
0	модели OSI отвечает за адресацию сообщений и преобразование логических адресов и
В	имен в физические адреса канального уровня, определяет путь (маршрут) прохождения дан-
	ных от передающего к принимающему компьютеру.
	Выберите один ответ:
	Уровень приложений;
	Уровень представлений;
	Сеансовый уровень;
	Транспортный уровень;
	Сетевой уровень;
	Канальный уровень;
	Физический уровень
9	Сеть интернет работает по принципу коммутации
	Выберите один ответ:
	каналов;
	пакетов
0	К общесистемному программному обеспечению САПР относят:
	Выберите один или несколько ответов:
	комплекс анализа прочности механических изделий в соответствии с методом конечных
	элементов;
	комплекс анализа электронных схем;
	операционные системы используемых ЭВМ и вычислительных систем;
	подсистемы машинной графики и геометрического моделирования;
	программно-методические комплексы имитационного моделирования производственных
	процессов;
	программно-методические комплексы расчета прочности по методу конечных элементов;
	программно-методические комплексы синтеза и анализа систем автоматического управления;
	сетевое программное обеспечение типовых телекоммуникационных услуг;
	подсистемы проектирования компонентов; подсистемы проектирования принципиальных, логических и функциональных схем;
	подсистемы проектирования топологии кристаллов;
	подсистемы тестов для проверки годности изделий. САПР – это любое средство общения, любая система символов и знаков для представ-
[САПР – это любое средство общения, любая система символов и знаков для представ- ления и обмена информацией.
	Выберите один ответ:
	алфавит;
	язык;
	· · · · · · · · · · · · · · · · · · ·

	система счисления;
	кодировка.
2	К наиболее общим фундаментальным законам в первую очередь относятся законы сохране-
	ния:
	Выберите один или несколько ответов:
	плотности;
	массы;
	количества движения;
	энергии;
	универсальности
3	Уравнение теплопроводности получается на основе утверждения: изменение во времени ко-
	личества теплоты в элементарном <u>объеме</u> равно сумме притока – стока теплоты и измене-
	ния теплоты за счет ее превращения в другие виды энергии в том же объеме
4	Установите соответствие уровня проектирования используемым на нем фазовым перемен-
	HIM. MAKEDOVEDOUL - TOKA A HARDSWOLLD B CACTOMAY, CKODOCTA A CASE I B MOYAHADO-
	Микроуровень → токи и напряжения в системах, скорости и силы в механиче-
	скихсистема, потоки и давления в гидравлических и пневматических системах
	Макроуровень → плотности потоков, напряженности полей, концентрации частиц
	и др
	Информационный уровень→ могут принимать только два значения - «занято» или
	«свободно»
	Выбрать из:
	токи и напряжения в системах, скорости и силы в механических система, потоки и
	давления в гидравлических и пневматических системах;
	плотности потоков, напряженности полей, концентрации частиц и др.
	могут принимать только два значения - «занято» или «свободно»
5	модели OSI позволяет прикладным программам получать доступ к сетевому
	сервису.
	Выберите один ответ:
	Уровень приложений;
	Уровень представлений;
	Сеансовый уровень;
	Транспортный уровень;
	Сетевой уровень;
	Канальный уровень;
	Физический уровень
6	Уравнение диффузии получается на основе утверждения: изменение во времени концентра-
	ции частиц в элементарном объеме равно сумме притока – стока частиц через поверхность и
	изменения концентрации за счет процессов генерации – <u>рекомбинации</u> частиц внутри объе-
	Ma.
7	Телефонная сеть работает по принципу коммутации
	каналов;
_	пакетов.
R	в сети являются терминальными, их называют клиентами, на них работают пользовате-
	ЛИ. Выберите один ответ:
	Выберите один ответ: рабочие станции;
0	серверы Уравнение теплопроводности получается на основе утверждения: изменение во времени ко-
9	личества теплоты в элементарном объеме равно сумме притока – стока теплоты и измене-
	ния теплоты за счет ее превращения в другие виды энергии в том же объеме.
h	Уравнение диффузии получается на основе утверждения: изменение во времени <u>концен-</u>
Ĭ	трации частиц в элементарном объеме равно сумме притока – стока частиц через поверх-
	ность и изменения концентрации за счет процессов генерации – рекомбинации частиц внутри
	объема.
1	Процесс создания модели, её исследования и распространения результатов на ори-
ſ	гинал называют
	Выберите один ответ:
	интерполирование;
ь	1

	сосредоточенными параметрами;
	статические;
	динамические;
	детерминированные;
	экспериментально-статистические.
6	Представленная зависимость является выражением закона ($kj0$ – значение предэскпоненциального множителя для j -ой стадии химической реакции, Ej - энергия активации j -ой $K_j(T) = k_{j0}e^{-\frac{K_j}{RT}}$ стадии, R – универсальная газовая постоянная, T – температура.).
	$\mathbf{A}_{j}(t) = \mathbf{A}_{j}(t)$
	Выберите один ответ:
	Эйлера; Аррениуса;
	Фарадея;
	Пекле.
7	Модели с сосредоточенными параметрами представляют собой
ľ	Выберите один или несколько ответов:
	дифференциальные уравнения в частных производных;
	обыкновенные дифференциальные уравнения;
	линейные алгебраические уравнения.
8	При использовании подсистем в Simulink облегчается модификация полной модели за счет
Ĭ	модификации ее более <u>простых</u> подсистем.
9	Вызов редактора дифференциальных уравнений Differential Equation Editor реализуется вво-
	<u>дом команды</u> <u>dee</u> в командном окне системы MATLAB.
0	Укажите уравнения материального баланса:
	Выберите один или несколько ответов:
	Приход вещества – Расход вещества = Накопление вещества
	Приход теплоты – Расход теплоты = Накопление теплоты
	Приход вещества = Расход вещества
	Приход теплоты = Расход теплоты
1	программное обеспечение САПР служит для организации функционирования техниче-
	ских средств.
	Выберите один ответ:
	общесистемное;
	прикладное.
2	Процесс создания модели, её исследования и распространения результатов на оригинал называют
	Выберите один ответ:
	интерполирование
	моделированием
	аппроксимацией
	оптимизацией
3	свойство системы, характеризующее взаимосвязанность элементов и наличие зависи-
	мости выходных параметров от параметров элементов, при этом большинство выходных па-
	раметров не является простым повторением или суммой параметров элементов.
	Выберите один ответ:
	целенаправленность;
	целостность;
	иерархичность.
4	_ <u>Компьютеры</u> _ в сети являются терминальными, их называют клиентами, на них ра-
	ботают пользователи.
5	На какой панели расположены операторы присвоения значений и вывода результатов расче-
	та?
	Выберите один ответ:
	Matrix (Матрица)
	Calculus (Исчисление)
	Symbolics (Символика)
1	Boolean (Булевы операторы)

	Evaluation (Оценка)
6	Graph (График) _База_ данных – это совокупность определенным образом организованных хранимых дан-
0	ных, используемых при проектировании.
7	Что такое "+" в документе MathCAD?
	Выберите один ответ:
	курсор ввода
	линии ввода
	местозаполнитель символа
ρ	указатель мыши Режим идеального подразумевает, что в реакционной зоне в определенный момент
	времени концентрация вещества и температура одинаковы по всему объему.
	Выберите один ответ:
	смешения;
	вытеснения.
9	Установите соответствие уровня проектирования и примеров моделируемых на нем систем
	Микроуровень → участки объемной структуры, например прямоугольный участок резистивнои
	области в интегральной схеме, участок несущей конструкции здания или жидкая фаза в парогенераторе и т. п.
	Макроуровень → резисторы, транзисторы в радиоэлектронных схемах, кронштейны, балки,
	станины, валы в механических устройствах и т. п.
	Информационный уровень → арифметическое устройство, оперативная память, устройства
	ввода/вывода и т. п.
	Выбрать из:
	резисторы, транзисторы в радиоэлектронных схемах, кронштейны, балки, станины, валы в
	механических устройствах и т. п.
	арифметическое устройство, оперативная память, устройства ввода/вывода и т. п.
	участки объемной структуры, например прямоугольный участок резистивнои области в инте-
	гральной схеме, участок несущей конструкции здания или жидкая фаза в парогенераторе и т. п.
0	Установите соответствие
	1)
	# A
	2) • • • •
	3)
	3) =
	4)
	D. Grand va
	Выбрать из:
	Калькулятор (1) Панель равенств и отношений (3)
	Панель равенств и отношении (3) Панель операций математического анализа (2)
	Панель вычислений (4)
1	Укажите уравнения баланса, записанные для объекта, работающего в стационарном режиме:
	Выберите один или несколько ответов:
	Приход вещества – Расход вещества = Накопление вещества
	Приход теплоты – Расход теплоты = Накопление теплоты
	Приход вещества = Расход вещества
	Приход теплоты = Расход теплоты
4	Функция, находящая собственные значения квадратной матрицы А Выберите один ответ:
	eigenvecs(A)
	eigenvals (A)
	g

	cols(A)					
	rows(A)					
	tr(A)					
3	Решение систем линейных алгебраических уравнений методом обратной матрицы осуществ-					
	ляется с помощью формулы					
	$(4)^{-1}$					
	$\mathbf{x} := \begin{pmatrix} A \\ A \end{pmatrix}$					
	a) $\mathbf{x} := AB^{-1}$ 6) $\mathbf{x} := A^{-1}B$ B) $\mathbf{x} := (AB)^{-1}$ $\mathbf{x} := (\overline{B})$					
	1)					
	Выберите один ответ:					
	a)					
	(a)					
	B)					
	-)					
4	Уравнение диффузии получается на основе утверждения: изменение во времени <u>концентра-</u>					
	<u>ции</u> частиц в элементарном объеме равно сумме притока – стока частиц через поверх-					
	ность и изменения концентрации за счет процессов генерации – рекомбинации частиц внутри					
	объема.					
5	По принципу коммутации каналов работает телекоммуникационная сеть.					
6	Линейное					
0	как отношение преобразованного по Лапласу выходного сигнала к преобразованному по					
	Лапласу входному сигналу.					
/	Модели с сосредоточенными параметрами представляют собой					
	Выберите один или несколько ответов:					
	дифференциальные уравнения в частных производных;					
	обыкновенные дифференциальные уравнения;					
	линейные алгебраические уравнения.					
R	На рисунке красным цветом выделен элемент, реализующий					
	Step Xos Xos					
	Gain Integrator Integrator1					
	Scope					
	Constant Constant1					
	Gain1 Gain2					
	2'0					
	PROB1.mat					
	To File					
	PROB1.mat					
	From File					
	Выберите один ответ:					
	единичное ступенчатое воздействие					
	умножение входной величины на постоянный коэффициент					
суммирование входных сигналов						
	интегрирование задание начальных условий при интегрированиимультиплексирование (слияние) входных					
	сигналов					
	отображение результатов в виде графиков запись результатов в файл					
	считывание информации из файла					
9	модель в явной форме содержит сведения о принадлежности элементов внутреннему					
ſ	или внешнему по отношению к детали пространству.					
	Выберите один ответ:					
	·					
	каркасная;					
	поверхностная;					

	объемная.						
0	это системы, выполняющие функции, характерные для интеллектуальных систем.						
	системы управления документами;						
	системы управления документооборотом;						
	системы управления знаниями;						
	инструментальные среды в системах делопроизводства обеспечение САПР – это совокупность машинных программ и сопутствующих им экс-						
	плуатационных документов, необходимых для выполнения автоматизированного проектиро-						
	вания.						
	математическое;						
	лингвистическое;						
	организационное;						
	программное.						
2	На рисунке изображена блок-схема для моделирования в Simulink						
	Integrator1 Gain1						
	1 80 4 1						
	in1						
	1 ← Opin3						
	Outi						
	\$1 -						
	dx						
	$C_1 \cdot \frac{dv}{t} + x(t) = K \cdot u_n(t) \tag{1}$						
	$C_1 \cdot \frac{dx}{dt} + x(t) = K \cdot u_n(t) \tag{1}$						
	$\mathbf{b}_{2} \frac{\mathbf{d}^{2} \mathbf{x}}{\mathbf{dt}^{2}} + \mathbf{b}_{1} \frac{\mathbf{d} \mathbf{x}}{\mathbf{d} \mathbf{t}} + \mathbf{b}_{0} \mathbf{x} = \mathbf{b}_{3} \mathbf{u}_{\mathbf{n}}(\mathbf{t})$						
	$u_2 \frac{1}{dt^2} + u_1 \frac{1}{dt} + u_0 x = u_3 u_n(t)$						
	dt 2 dt (2)						
	(t)						
	$\mathbf{y_{per}} = -\left(\mathbf{S_1}\Delta\mathbf{x} + \mathbf{S_0}\int_{0}^{t} \Delta\mathbf{x} \cdot d\mathbf{t}\right),$						
	(1 0)						
	(5)						
	Выберите один ответ:						
	объекта первого порядка (1)						
	объекта второго порядка (2)						
	ПИ-регулятора (3)						
3	Развитие CALS-технологии должно привести к появлению так называемых _виртуальных						
٢	производств, при которых процесс создания спецификаций с информацией для программно						
	управляемого технологического оборудования, достаточной для изготовления изделия, может						
	быть распределен во времени и пространстве между многими организационно автономными						
	проектными студиями.						
и	_Программное_ обеспечение САПР представлено компьютерными программами САПР.						
<u> </u>							
Р	CALS-технология – это технология комплексной компьютеризации сфер промышленного						
	производства, цель которой – унификация и стандартизация спецификаций промышленной						
	продукции на всех этапах её жизненного цикла.						
6	Техническое <u>задание</u> на создание автоматизированной системы (AC) – основной документ,						
	определяющий требования на порядок создания (развития или модернизации) АС и её прием-						
<u></u>	ки при вводе в действие.						
7	АСУТП охватывают уровни от <u>цеха</u> и ниже						
8	выполняют в сети управляющие или общие для многих пользователей проектные функ-						
	ции.						
1							
Î	рабочие станции;						
9	серверы.						
9	серверы в сети являются терминальными, их называют клиентами, на них работают пользовате-						
9	серверы в сети являются терминальными, их называют клиентами, на них работают пользователи.						
9	серверы в сети являются терминальными, их называют клиентами, на них работают пользователи. Выберите один ответ:						
9	серверы в сети являются терминальными, их называют клиентами, на них работают пользователи. Выберите один ответ: рабочие станции;						
9	серверы в сети являются терминальными, их называют клиентами, на них работают пользователи. Выберите один ответ:						

$$A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \qquad B := \begin{pmatrix} -1 & -2 \\ -5 & -6 \\ -7 & -8 \end{pmatrix}$$

$$a) \begin{pmatrix} 1 & 2 & -1 & -2 \\ 3 & 4 & -5 & -6 \\ 5 & 6 & -7 & -8 \end{pmatrix} \qquad 6) \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ -1 & -2 \\ -5 & -6 \\ -7 & -8 \end{pmatrix}$$

$$B) \begin{pmatrix} -1 & -2 & 1 & 2 \\ -5 & -6 & 3 & 4 \\ -7 & -8 & 5 & 6 \end{pmatrix} \qquad r) \begin{pmatrix} 2 & 4 \\ 8 & 10 \\ 12 & 14 \end{pmatrix}$$

Выберите один ответ:

- a)
- б)
- в)
- г)

Имеется аппарат РИВ, работающий в стационарном режиме. На рисунке изображена кинетическая схема проходящей в нем химической реакции. Укажите математическое описание реактора, которое составлено правильно.

$$A \xrightarrow{1} B \stackrel{2}{\underset{3}{\longleftrightarrow}} C$$

Рис. Схема реакции

$$\begin{cases}
U \frac{dX_{A}}{dl} = -k_{1} \cdot X_{A}, \\
U \frac{dX_{P}}{dl} = k_{1} \cdot X_{A} - k_{2} \cdot X_{B} - k_{3} \cdot X_{B}, \\
U \frac{dX_{C}}{dl} = k_{2} \cdot X_{B}
\end{cases} (1)$$

$$U \frac{dX_{D}}{dl} = k_{3} \cdot X_{B}.$$

$$X_{A}|_{l=0} = X_{A}^{0}, X_{B}|_{l=0} = X_{B}^{0}, X_{C}|_{l=0} = X_{C}^{0}, X_{D}|_{l=0} = X_{D}^{0}$$

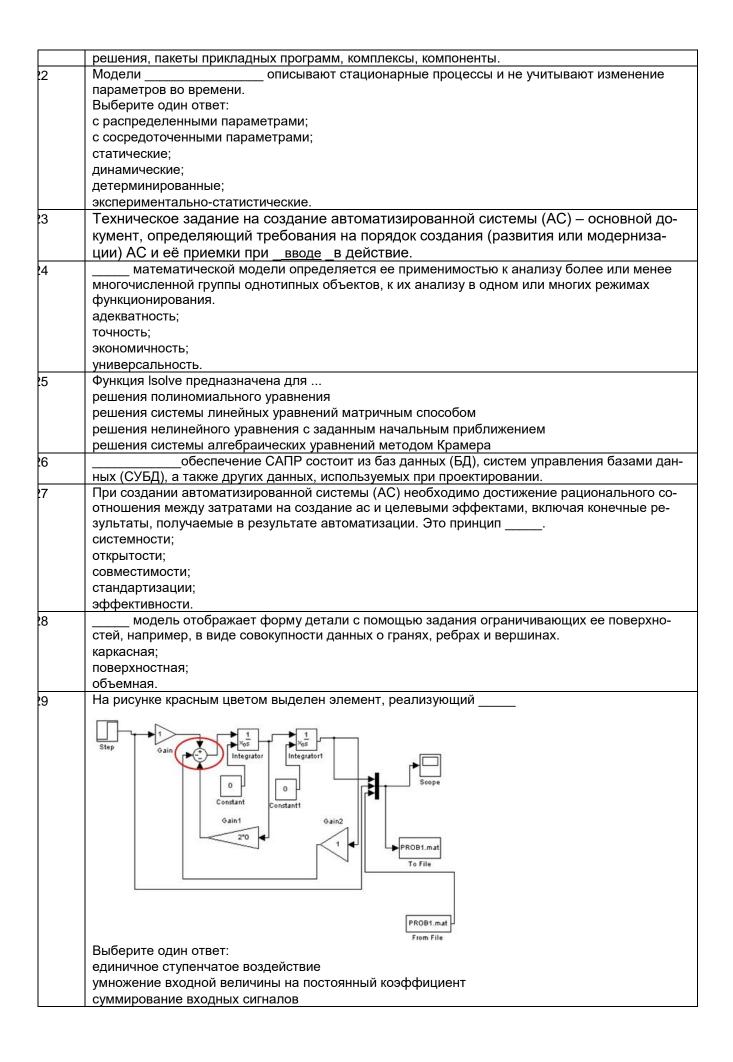
$$U \frac{dX_{A}}{dl} = -k_{1} \cdot X_{A}, \\
U \frac{dX_{P}}{dl} = k_{1} \cdot X_{A} - k_{2} \cdot X_{B} - k_{3} \cdot X_{B}, \\
U \frac{dX_{C}}{dl} = k_{2} \cdot X_{C}$$

$$U \frac{dX_{D}}{dl} = k_{3} \cdot X_{D}$$

$$X_{A}|_{l=0} = X_{A}^{0}, X_{B}|_{l=0} = X_{B}^{0}, X_{C}|_{l=0} = X_{C}^{0}, X_{D}|_{l=0} = X_{D}^{0}$$

Выберите один ответ:

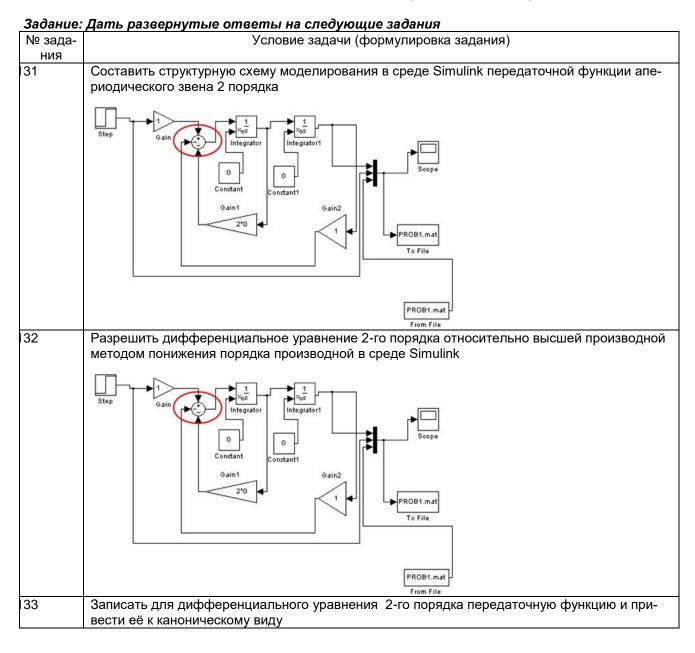
система (1);


система (2).

- <u>Математическое</u> обеспечение САПР объединяет математические методы, модели и алгоритмы для выполнения проектирования.
- 3 Языки ____ САПР необходимы для создания программного обеспечения при разработке

	САПР.
	Выберите один ответ:
	программирования; управления;
	• •
	проектирования.
1	Уравнение теплопроводности получается на основе утверждения: изменение во времени ко-
7	личества теплоты в элементарном <u>объеме</u> равно сумме притока — стока теплоты и измене-
	ния теплоты за счет ее превращения в другие виды энергии в том же объеме.
5	Как ввести оператор присваивания?
	Выберите один ответ:
	нажатием кнопки Definition (Присваивание) на панели инструментов Calculator (Калькулятор)
	нажатием кнопки Definition (Присваивание) на панели инструментов Evaluation (Вычисление)
	с помощью клавиш Shift+:
	любым из перечисленных способов
6	модели OSI позволяет двум приложениям на разных компьютерах установить, исполь-
	зовать и завершить соединение, которое называется сеансом.
	Выберите один ответ:
	Уровень приложений;
	Уровень представлений;
	Сеансовый уровень;
	Транспортный уровень;
	Сетевой уровень;
	Канальный уровень;
	Физический уровень
7	Языки САПР ориентированы на пользователей – проектировщиков и предназначены
	для эксплуатации САПР.
	программирования;
	управления;
	проектирования.
8	Как называется способ аппроксимации, при котором аппроксимирующая функция проход через
	все опытные точки?
	Выберите один ответ:
	сглаживание с фильтрацией данных
	интерполяция
0	регрессия Верно ли утверждение: "Для вставки гиперссылки используется команда Insert / Hyperlink"?
9	Да
	Het
00	Каким способом можно вычислить производную?
,0	Symbolics→Variable→Differentiate
	Symbolics—Variable—Integrate
	Symbolics→Evaluate→Solve
)1	служат для формирования систем делопроизводства, адаптированных к условиям кон-
ĺ .	кретных предприятий и фирм.
	Выберите один ответ:
	системы управления документами;
	системы управления документооборотом;
	системы управления знаниями;
	инструментальные среды в системах делопроизводства.
)2	Рабочие <u>станции</u> выполняют в сети управляющие или общие для многих пользователей
	проектные функции.
)3	– один из инструментов ввода графических данных в компьютер, разновидность мани-
	пуляторов. Внешне имеет вид шариковой ручки или карандаша, соединённого проводом с од-
	ним из портов ввода-вывода компьютера.
	Выберите один ответ:
	сканер;
	световое перо;
	дигитайзер;
	принтер;

	плоттер
14	плоттер. обеспечение САПР представляет собой набор стандартов и других документов, уста-
)4	навливающих состав и правила отбора и эксплуатации средств функционирования САПР, по-
	рядок выполнения работ и отработки документации.
	математическое;
	лингвистическое;
	методическое;
_	организационное.
)5	Проектирование технического объекта – создание, преобразование и представление в
	принятой форме образа еще не существующего объекта.
)6	совокупность значений фазовых переменных, зафиксированных в одной временной
	точке процесса функционирования.
	параметр;
	структура;
	состояние;
	фазовая переменная.
)7	Каким сочетанием клавиш вводится символьный знак равенства?
	Ctrl+<.>
	Ctrl+<=>
	Alt+<.>
	Alt+<=>
8(математической модели определяется затратами ресурсов, требуемых для реализации
	модели, характеризуется затратами машинных времени и памяти.
	Выберите один ответ:
	адекватность;
	точность;
	экономичность;
	универсальность.
9	Функция, которая создает единичную матрицу порядка п
	Выберите один ответ:
	diag(n)
	rref(n)
	identity(n)
	stack(n)
0	CAE (Computer Aided Engineering) системы – это
U	САПР функционального проектирования (САПР-Ф);
	конструкторские САПР (САПР-К);
	технологические САПР (САПР-Т).
1	Техническое <u>задание</u> на создание автоматизированной системы (AC) – основной доку-
'	мент, определяющий требования на порядок создания (развития или модернизации) АС и её
	приемки при вводе в действие.
2	При создании автоматизированной системы (АС) должны быть рационально применены типо-
_	вые, унифицированные и стандартизованные элементы, проектные решения, пакеты приклад-
	ных программ, комплексы, компоненты. Это принцип
	Выберите один ответ:
	системности;
1	открытости;
	совместимости;
1	стандартизации;
	эффективности.
3	Даны матрицы А и В. Тогда результат выполнения АВ будет


	20 10 0 0
	a) $\begin{pmatrix} 1 & 2 & -1 & -2 \\ 3 & 4 & -5 & -6 \\ 5 & 6 & -7 & -8 \end{pmatrix}$ 6) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ -1 & -2 \\ -5 & -6 \\ -7 & -8 \end{pmatrix}$ B) $\begin{pmatrix} -1 & -2 & 1 & 2 \\ -5 & -6 & 3 & 4 \\ -7 & -8 & 5 & 6 \end{pmatrix}$ r) $\begin{pmatrix} 2 & 4 \\ 8 & 10 \\ 12 & 14 \end{pmatrix}$
	Выберите один ответ: а) б) в) г)
4	Основной общий принцип системного подхода заключается в рассмотрении частей явления
	или сложной системы с <u>учетом</u> их взаимодействия.
5	<u>Организационное</u> обеспечение САПР представлено штатными расписаниями, должностными инструкциями и другими документами, регламентирующими работу проектного предприятия.
6	САМ (Computer Aided Manufacturing) Системы – это Выберите один ответ: САПР функционального проектирования (САПР-Ф); конструкторские САПР (САПР-К);
_	технологические САПР (САПР-Т).
7	обеспечение САПР представлено компьютерными программами САПР. Выберите один ответ: техническое; математическое; программное; информационное; лингвистическое; методическое; организационное.
8	Блок Differential Equation Editor (редактор дифференциальных уравнений): Выберите один ответ: представляет собой набор блоков, разработанных для использования с Simulink; реализует метод динамической оптимизации; автоматически настраивает параметры моделируемых систем, основываясь на определенных пользователем ограничениях на их временные характеристики; позволяет задать системы обыкновенных дифференциальных уравнений в форме Коши и
9	выполнить их моделирование. При использовании подсистем в Simulink облегчается модификация полной модели за счет модификации ее более простых _подсистем
20	Если
	1 3
21	Принцип <u>стандартизации</u> при создании автоматизированной системы (АС) должны быть рационально применены типовые, унифицированные и стандартизованные элементы, проектные

	интегрирование задание начальных условий при интегрированиимультиплексирование (слияние) входных сигналов отображение результатов в виде графиков запись результатов в файл считывание информации из файла
BO	Установите соответствие simplify substitute factor expand Выбрать из: Функция, выполняющая операцию разложить на множители Функция, выполняющая операцию развернуть (открывает скобки, приводит подобные) Функция, выполняющая операцию подстановки Функция, выполняющая операцию упростить выражение

3.2 Кейс - задания

3.2.1 ПКв-4 - Разработка новых технологий и средств механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции

точной функции апериодического звена 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции колебательного звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции форсирующего звена Составить математическую модель трубчатого реактора Составить математическую модель реактора с мешалкой Составить блок-схему математической модели трубчатого реактора в среде Simulink Составить блок-схему математической модели трубчатого реактора в среде Simulink Составить блок-схему математической модели трубчатого реактора в среде Simulink Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и объектом инерционным звеном 1-го порядка в среде Simulink Составить блок-охему математического зерез Simulink Составить блока DDE и их назначение в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simuli		
Точной функции апериодического звена 1 порядка Составить структурную схему моделировать в среде Simulink объект заданный в виде передаточной функции колебательного звена Составить структурную схему моделирования в среде Simulink передаточной функции колебательного звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции форсирующего звена Составить магематическую модель реактора с мешалкой Составить математическую модель реактора с мешалкой Составить математическую модель реактора с мешалкой в среде Simulink Составить блок-схему математической модели трубчатого реактора в среде Simulink Составить блок-схему математической модели трубчатого реактора в среде Simulink Составить блок-схему математической модели реактора с мешалкой в среде Simulink Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и объектом инерционным звеном 1-го порядка в среде Simulink Составить масель замкнутой системы автоматического регулирования с ПИД регулятором и объектом инерционным звеном 1-го порядка в среде Simulink Составить магематическую модель реактора идеального вытеснения Параметры блока DDE и их назначение в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реального инференцирующего звена Составить блок-схему и смоделировать в среде Simulink передаточной функции последовательно соединенных звеньев – реального инференцирующего и окноервативного следовательно соединенных звеньев – реального ифференцирующего и порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка осставить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – осроченными з вереде Simulink передаточной		Integrator O Constant Gain1 PROB1.mat To File
Постранить структурную схему моделирования в среде Simulink передаточной функции ко- лебательного звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде переда- точной функции форсирующего звена Составить математическую модель трубчатого реактора Составить математическую модель реактора с мешалкой Составить блок-схему математической модели трубчатого реактора в среде Simulink Составить блок-схему математической модели трубчатого реактора в среде Simulink Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и объектом инерционным звеном 1-го порядка в среде Simulink Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и объектом инерционным звеном 1-го порядка в среде Simulink Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и объектом инерционным звеном 1-го порядка в среде Simulink Составить математическую модель реактора идеального вытеснения Параметры блока DDE и их назначение в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реального идфереенцирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции по- следовательно соединенных звеньев – реального дифереенцирующего и консервативного Как организовать а рхивацию параметра в требуемом интервале времени в SCADA- системах Составить структурную схему моделирования в среде Simulink передаточной функции по- следовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции по- следовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink пе	134	Составить блок-схему и смоделировать в среде Simulink объект заданный в виде переда-
Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции форсирующего звена Составить математическую модель трубчатого реактора Составить блок-схему математической модель реактора с мешалкой Составить блок-схему математической модели трубчатого реактора в среде Simulink Составить блок-схему математической модели трубчатого реактора в среде Simulink Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и объектом инериционным звеном 1-го порядка в среде Simulink Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и объектом аперидоцического звена 2 порядка в среде Simulink Составить математическую модель реактора идеального вытеснения Параметры блока DDE и их назначение в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink Составить блок-схему и смоделировать в среде Simulink Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить блок-схему и окоделировать в среде Simulink передаточной функции последовательно соединенных звеньее − реального дифференцирующего и консервативного Как организовать а рхивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции последовательного соединенных звеньее − форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньее − форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньее − апериодичес	35	Составить структурную схему моделирования в среде Simulink передаточной функции ко-
точной функции форсирующего звена 7 Составить математическую модель трубчатого реактора 7 Составить математическую модель реактора с мешалкой 7 Составить блок-схему математической модели трубчатого реактора в среде Simulink 7 Составить блок-схему математической модели реактора с мешалкой в среде Simulink 8 Составить блок-схему математической модели реактора с мешалкой в среде Simulink. 8 Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и объектом инерционным звеном 1-го порядка в среде Simulink. 8 Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и объектом апериодического звена 2 порядка в среде Simulink. 8 Составить математическую модель реактора идеального вытеснения 8 Параметры блока DDE и их назначение в среде Simulink 8 Моделирование ПИ-регулятора в в среде Simulink 8 Моделирование ПИ-регулятора в в среде Simulink 8 Моделирование ПИД-регулятора в в среде Simulink 8 Моделирование ПИД-регулятора в в среде Simulink 8 Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена 8 Составить слок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена 8 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного 8 Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах 8 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка 8 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего о апериодического 1 порядка 8 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего 8 Вывести Simulink-модель апериодич		
38 Составить математическую модель трубчатого реактора 38 Составить математическую модель реактора с мешалкой 39 Составить блок-схему математической модели грубчатого реактора в среде Simulink 40 Составить блок-схему математической модели грубчатого реактора в среде Simulink. 41 Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и объектом инерицонным звеном 1-то порядка в среде Simulink. 42 Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и объектом апериодического звена 2 порядка в среде Simulink. 43 Составить математическую модель реактора идеального вътеснения 44 Параметры блока DDE и их назначение в среде Simulink 45 Моделирование ПИ-регулятора в в среде Simulink 46 Моделирование ПИД-регулятора в в среде Simulink 47 Моделирование ПИД-регулятора в в среде Simulink 48 Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реального звена 49 Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реального звена 50 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного 51 Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах 52 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апермодического 2 порядка 54 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апермодического 2 порядка 55 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего о апермодического 2 порядка 56 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка 56 Составить структурную схему моделирования в среде Simulink передаточной функ	136	
Составить математическую модель реактора с мешалкой Составить блок-схему математической модели трубчатого реактора в среде Simulink Составить блок-схему математической модели реактора с мешалкой в среде Simulink. Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и объектом инерционным звеном 1-го порядка в среде Simulink. Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и объектом инерционным звеном 1-го порядка в среде Simulink. Составить математическую модель реактора идеального вытеснения Параметры блока DDE и их назначение в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реально дифференцирующего звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить спок-схему и смоделировать в среде Simulink передаточной функции последовательно соединенных звеньев — реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев — форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев — форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев — форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев — апериодического 2 порядка Составить структурную схему моделирования	137	
 Составить блок-схему математической модели трубчатого реактора в среде Simulink Составить блок-схему математической модели реактора с мешалкой в среде Simulink. Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и объектом инерционным звеном 1-го порядка в среде Simulink. Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и объектом апериодического звена 2 порядка в среде Simulink. Составить математическую модель реактора идеального вытеснения Параметры блока DDE и их назначение в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реально дифференцирующего звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического	138	
Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и объектом инерционным звеном 1-го порядка в среде Simulink. 1 Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и объектом апериодического звена 2 порядка в среде Simulink. 1 Составить математическую модель реактора идеального вытеснения Параметры блока DDE и их назначение в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПД-регулятора в в среде Simulink Ссставить блок-схему и смоделировать в среде Simulink Ссставить блок-схему и смоделировать в среде Simulink Объект заданный в виде передаточной функции реально дифференцирующего звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Ссставить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции попедовательно соединенных звеньев − апериодического 1 порядка Вседе Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − апериодического 3 порядка и реального интегрирующего в вывести Структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − консерватиного и форсирующего и форсирующего и форсирующего и форсирующего	139	Составить блок-схему математической модели трубчатого реактора в среде Simulink
Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и объектом инерционным звеном 1-го порядка в среде Simulink. 1 Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и объектом апериодического звена 2 порядка в среде Simulink. 1 Составить математическую модель реактора идеального вытеснения Параметры блока DDE и их назначение в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПД-регулятора в в среде Simulink Ссставить блок-схему и смоделировать в среде Simulink Ссставить блок-схему и смоделировать в среде Simulink Объект заданный в виде передаточной функции реально дифференцирующего звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Ссставить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции попедовательно соединенных звеньев − апериодического 1 порядка Вседе Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − апериодического 3 порядка и реального интегрирующего в вывести Структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − консерватиного и форсирующего и форсирующего и форсирующего и форсирующего	40	Составить блок-схему математической модели реактора с мешалкой в среде Simulink.
 Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и объектом апериодического звена 2 порядка в среде Simulink. Составить математическую модель реактора идеального вытеснения Параметры блока DDE и их назначение в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПД-регулятора в в среде Simulink Моделирование ПД-регулятора в в среде Simulink Моделирование ПД-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реально дифференцирующего звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка вридений функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде	141	Построить модель замкнутой системы автоматического регулирования с ПИ регулятором и
 43 Составить математическую модель реактора идеального вытеснения 44 Параметры блока DDE и их назначение в среде Simulink 45 Моделирование ПИ-регулятора в в среде Simulink 46 Моделирование ПИД-регулятора в в среде Simulink 47 Моделирование ПИД-регулятора в в среде Simulink 48 Составить блок-схему и смоделировать в среде Simulink 49 Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реально дифференцирующего звена 50 Составить структурную схему моделировать в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного 51 Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах 52 Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена 53 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка 54 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка 55 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка 56 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего 57 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего интегрирующего 58 Вывести Simulink-модель апериодического звена 1 порядка 60 Моделирование Транспортного запаздывания в Simulink 61 Моделирование ПИ-регулятора в Simul	142	Построить модель замкнутой системы автоматического регулирования с ПИД регулятором и
 Параметры блока DDE и их назначение в среде Simulink Моделирование ПИ-регулятора в в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реально дифференцирующего звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить блок-схему и смоделировать в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде S	1/13	
 Моделирование ПИ-регулятора в в среде Simulink Моделирование ПД-регулятора в в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реально дифференцирующего звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Вывести Simulink-модель апе		
 Моделирование ПД-регулятора в в среде Simulink Моделирование ПИД-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реально дифференцирующего звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка		
 Моделирование ПИД-регулятора в в среде Simulink Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реально дифференцирующего звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Моделирование Транспортного запаздывания в Simulink <		
 Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции реально дифференцирующего звена Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование ТИ-регулятора в Simulink Моделирование ПИ-регулятора в Simulink 		
 Составить блок-схему и смоделировать в среде Simulink объект заданный в виде передаточной функции консервативного звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 1 порядка Моделирование Транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink Моделирование ПИ-регулятора в Simulink 	48	Составить блок-схему и смоделировать в среде Simulink объект заданный в виде переда-
 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − реального дифференцирующего и консервативного Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − консервативного и форсирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование Транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink 	149	Составить блок-схему и смоделировать в среде Simulink объект заданный в виде переда-
 Как организовать архивацию параметра в требуемом интервале времени в SCADA-системах Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование Транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink 	150	Составить структурную схему моделирования в среде Simulink передаточной функции по-
 Составить структурную схему моделирования в среде Simulink передаточной функции реального интегрирующего звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев − консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование Транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink 	151	Как организовать архивацию параметра в требуемом интервале времени в SCADA-
 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink 	152	
следовательно соединенных звеньев — форсирующего и апериодического 1 порядка Составить структурную схему моделирования в среде Simulink передаточной функции по- следовательно соединенных звеньев — форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апе- риодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев — апе- риодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев — консер- вативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink		
 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink 	153	
следовательно соединенных звеньев — форсирующего и апериодического 2 порядка Составить структурную схему моделирования в среде Simulink передаточной функции апериодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев — апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев — консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink	E 4	
риодического 3 порядка звена Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев — апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев — консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink	104	
 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink 	155	
передаточной функции последовательно соединенных звеньев – апериодического 2 порядка и реального интегрирующего 57 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего 58 Вывести Simulink-модель апериодического звена 1 порядка 59 Вывести Simulink-модель апериодического звена 4 порядка 60 Моделирование транспортного запаздывания в Simulink 61 Моделирование ПИ-регулятора в Simulink	156	
 Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консервативного и форсирующего Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink 	.50	передаточной функции последовательно соединенных звеньев – апе-
 Вывести Simulink-модель апериодического звена 1 порядка Вывести Simulink-модель апериодического звена 4 порядка Моделирование транспортного запаздывания в Simulink Моделирование ПИ-регулятора в Simulink 	157	Составить структурную схему моделирования в среде Simulink передаточной функции последовательно соединенных звеньев – консер-
59 Вывести Simulink-модель апериодического звена 4 порядка 60 Моделирование транспортного запаздывания в Simulink 61 Моделирование ПИ-регулятора в Simulink	158	
60 Моделирование транспортного запаздывания в Simulink 61 Моделирование ПИ-регулятора в Simulink	159	
61 Моделирование ПИ-регулятора в Simulink	160	
62 Включение регулятора в обратную связь объекта регулирования в среде Simulink	161	Моделирование ПИ-регулятора в Simulink
	162	Включение регулятора в обратную связь объекта регулирования в среде Simulink

3.3 Собеседование (вопросы к экзамену, защите лабораторных работ)

3.3.1 ПКв-4 - Разработка новых технологий и средств механизации, автоматизации и роботизации промышленных линий по производству пишевой продукции

	вации промышленных линий по производству пищевой продукции					
№ за- дания	Текст вопроса					
64	Автоматизация проектирования. Определение. Назначение. Составные части.					
65	Основные стандарты и нормативные документы автоматизации проектирования. Принципы создания АС, отраженные в ГОСТах.					
66	Стадии и этапы создания АС, отраженные в ГОСТах. Техническое задание на создание АС.					
67	Понятие инженерного проектирования. Принципы системного подхода в проектировании. Основные понятия системотехники (система, элемент, сложная система, подсистема, надсистема, структура, параметр).					
68	Моделирование и синтез сложных систем как понятия системотехники. Примеры и характеристики сложных систем.					
69	Подсистемы САПР. Виды обеспечения САПР. Определение. Назначение.					
70	Классификация САПР (по приложению, по целевому назначению, по масштабам, по характеру базовой подсистемы).					
171	САD-системы, САМ-системы, САЕ-системы, сквозные САПР. Основные функции. Примеры.					
72	«Легкие», «тяжелые» и среднемасштабные САПР. Сравнительный анализ. Примеры.					
173	Примеры САПР (САПР печатных плат, машиностроительные САПР и др.). Тенденции и направления развития САПР в России. Компании-лидеры на рынке САПР.					
174	CALS-технология. Комплексные автоматизированные системы. Системы управления в составе комплексных автоматизированных систем.					
175	Назначение, функции и характерные особенности современных АСУП и АСУТП. SCADA- системы.					
176	Автоматизированные системы делопроизводства. Классификация. Назначение. Основные функции, свойства и характеристики.					
177	Техническое обеспечение САПР. Основные компоненты. Требования, предъявляемые к комплексу технических средств САПР.					
178	Классификация технических средств САПР. Назначение и устройства различных групп технических средств САПР.					
179	Структура технического обеспечения САПР для небольших и крупных организаций. Особенности используемого оборудования, обмена информацией. Эталонная модель взаимосвязи открытых систем.					
180	Автоматизированное рабочее место, промышленный компьютер. Назначение, состав, особенности. Периферийные устройства для ввода/вывода графической информации.					
181	Математическое обеспечение САПР. Определение. Назначение. Классификация и требования, предъявляемые к математическим моделям.					
182	Математические модели на микроуровне (иерархическом уровне В). Законы, лежащие в основе этих моделей. Вид уравнений, используемых для математического описания.					
183	Математические модели гидроаэродинамических устройств на микроуровне (иерархическом уровне В).					
184	Математическая модель теплопроводности на микроуровне (иерархическом уровне В).					
185	Математическая модель диффузии на микроуровне (иерархическом уровне В).					
186	Компонентные и топологические уравнения на макроуровне (иерархическом уровне Б). Определение. Назначение.					
87	Компонентные и топологические уравнения на макроуровне (иерархическом уровне Б). Электрические системы.					
88	Компонентные и топологические уравнения на макроуровне (иерархическом уровне Б). Механические поступательные системы.					
89	Компонентные и топологические уравнения на макроуровне (иерархическом уровне Б). Механические упругие системы.					
190	Компонентные и топологические уравнения на макроуровне (иерархическом уровне Б). Механические вращательные системы.					
91	Компонентные и топологические уравнения на макроуровне (иерархическом уровне Б). Гидравлические и пневматические системы.					
192	Компонентные и топологические уравнения на макроуровне (иерархическом уровне Б). Тепловые системы.					
193	Использование аналогий между физическими системами в САПР.					

194	Математическое обеспечение подсистем машинной графики и геометрического моделирования.						
195	Программное обеспечение САПР. Определение. Назначение. Классификация.						
196	Общесистемное программное обеспечение САПР (операционные системы). Основные используемые ОС, их возможности.						
197	Общесистемное программное обеспечение САПР (ПО типовых телекоммуникационных услуг). Основные телекоммуникационные информационные услуги и обеспечивающие их протоколы.						
198	Прикладное программное обеспечение САПР.						
199	Структура программного обеспечения САПР систем управления.						
200	Информационное обеспечение САПР. Определение. Назначение. Требования к ИО САПР. База данных.						
201	Лингвистическое обеспечение САПР. Определение. Назначение. Классификация языков САПР. Процесс преобразования информации в САПР.						
202	Классификация входных языков проектирования САПР. Требования к входным языкам САПР. Внутренние языки САПР. Особенности формализации информации в САПР.						
203	Организационное и методическое обеспечение САПР. Определение. Назначение. Основные ГОСТы на создание и эксплуатацию САПР.						
204	Simulink. Назначение. Основные приемы работы.						
205	Simulink. Структура рабочего окна, библиотеки. Сумматор, интегратор, осциллограф, мультиплексор – назначение и настройка элементов.						
206	В чем заключается метод понижения порядка производной при решении дифференциаль-						
	$\frac{d^2\bar{x}}{dt^2} + a_1 \frac{d\bar{x}}{dt} + a_0 \bar{x} = u.$						
	ного уравнения:						
207	Составить структурную схему моделирования в среде Simulink передаточной функции апе- $W(s) = \frac{k}{Ts+1}$						
	риодического звена 1 порядка: Ts + 1						
208	Составить структурную схему моделирования в среде Simulink передаточной функции апе-						
	$W(s) = \frac{K}{\left(T_1 s + 1\right) \cdot \left(T_2 s + 1\right)}$ риодического звена 2 порядка:						
209	Моделирование ПИ-регулятора в Simulink.						
210	Включение регулятора в обратную связь объекта регулирования в Simulink (на примере).						
211	Процесс построения модели замкнутой системы автоматического регулирования в Simulink.						
240	Задание параметров объекта и регулятора.						
212	Библиотека нелинейных элементов Simulink. Настройка нелинейных элементов Simulink при решении конкретных задач.						
213	Рабочая область Matlab. Сохранение данных в файл. Процесс считывания исходных данных для моделирования из файла.						
214	Назначение пакета Nonlinear Control Design Blockset. Его возможности.						
215	Правила работы с пакетом NCD. Блок NCD Output. Назначение, параметры, настройка.						
216	Блок NCD Output. Процесс настройки ограничений, накладываемых на переходную функ-						
217	цию. Блок NCD Output. Процесс задания оптимизируемых параметров.						
218	Процесс построения модели замкнутой системы автоматического регулирования в Simulink с использованием пакета NCD. Задание параметров объекта и регулятора.						
219	Процесс оптимизации настроек ПИ-регулятора замкнутой системы автоматического регулирования в Simulink с использованием пакета NCD при постоянных параметрах объекта.						
220	Процесс оптимизации настроек ПИД-регулятора замкнутой системы автоматического регулирования в Simulink с использованием пакета NCD при постоянных параметрах объекта.						
221	Процесс оптимизации настроек ПИ-регулятора замкнутой системы автоматического регулирования в Simulink с использованием пакета NCD при неопределенных параметрах объек-						
222	та. Процесс оптимизации настроек ПИД-регулятора замкнутой системы автоматического регу-						
200	лирования в Simulink с использованием пакета NCD при неопределенных параметрах объекта.						
223	Достоинства использования подсистем. Процесс построения структурной схемы системы в Simulink с использованием блока SubSystem.						
224	Редактор дифференциальных уравнений DEE. Назначение. Правила использования.						

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Процедуры оценивания в ходе изучения дисциплины знаний, умений и навыков, характеризующих этапы формирования компетенций, регламентируются положениями:

- П ВГУИТ 2.4.03 Положение о курсовых, экзаменах и зачетах;
- П ВГУИТ 4.1.02 Положение о рейтинговой оценке текущей успеваемости.

Для оценки знаний, умений, навыков студентов по дисциплине **«Автоматизированное проектирование средств и систем управления»** применяется балльно-рейтинговая система.

Рейтинговая система оценки осуществляется в течение всего семестра при проведении аудиторных занятий, показателем ФОС является текущий опрос в виде собеседования, сдачи тестов, кейс-заданий, задач и сдачи разделов курсового проекта по предложенной преподавателем теме, за каждый правильный ответ студент получает 5 баллов (зачтено - 5, незачтено - 0). Максимальное число баллов по результатам текущей работы в семестре 50.

Бальная система служит для получения экзамена и/или зачета по дисциплине.

Максимальное число баллов за семестр – 100.

Максимальное число баллов по результатам текущей работы в семестре – 50.

Максимальное число баллов на экзамене и/или зачете – 50.

Минимальное число баллов за текущую работу в семестре – 30.

Студент, набравший в семестре менее 30 баллов, может заработать дополнительные баллы, отработав соответствующие разделы дисциплины или выполнив обязательные задания, для того, чтобы быть допущенным до экзамена и/или зачета.

Студент, набравший за текущую работу менее 30 баллов, т.к. не выполнил всю работу в семестре по объективным причинам (болезнь, официальное освобождение и т.п.) допускается до экзамена и/или зачета, однако ему дополнительно задаются вопросы на собеседовании по разделам, выносимым на экзамен и/или зачет.

В случае неудовлетворительной сдачи экзамена и/или зачета студенту предоставляется право повторной сдачи в срок, установленный для ликвидации академической задолженности по итогам соответствующей сессии. При повторной сдаче экзамена и/или зачета количество набранных студентом баллов на предыдущем экзамене и/или зачете не учитывается.

Экзамен и/или зачет может проводиться в виде тестового задания и кейс-задач или собеседования и кейс-заданий и/или задач.

Для получения оценки «отлично» суммарная бально-рейтинговая оценка студента по результатам работы в семестре и на экзамене должна составлять 90 и выше баллов;

- оценки «хорошо» суммарная бально-рейтинговая оценка студента по результатам работы в семестре и на экзамене должна составлять от 75 до 89,99 баллов;
- оценки «удовлетворительно» суммарная бально-рейтинговая оценка студента по результатам работы в семестре и на экзамене должна составлять от 60 до 74,99 баллов;
- оценки «неудовлетворительно» суммарная бально-рейтинговая оценка студента по результатам работы в семестре и на экзамене должна составлять менее 60 баллов.

Для получения оценки «зачтено» суммарная бально-рейтинговая оценка студента по результатам работы в семестре и на зачете должна быть не менее 60 баллов.

5. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания для каждого результата обучения по дисциплине

	Предмет оценки	Показатель оце- нивания	Критерии оценивания сформированности компетенций	Шкала оценивания	
Результаты обучения по этапам формирования компетенций	(продукт или процесс)			Академическая оценка или баллы	Уровень освоения компетенции
ПКе-4 - Разработка новых те ции	ехнологий и средст	гв механизации, авт	оматизации и роботизации промышленных линий п	о производству п	ищевой продук
		систем; принци-	90 и выше	отлично	Освоена (по- вышенный)
			от 75 до 89,99	хорошо	Освоена (по- вышенный)
Знать мехатронные и робототех-	Тест		60 до 74,99	удовлетвори- тельно	Освоена (базо- вый)
нические системы; принципы действия и конструкции устройств технических средств и систем автоматизации и роботизации; алгоритми-			менее 60	неудовлетвори- тельно	Не освоена (недостаточ- ный)
ческое и программное обеспечение средств и систем механизации, автоматизации и роботизации	Собеседование (защита лабора- торных работ)	нять измери- тельные устрой- ства для кон- троля технологи- ческих парамет-	обучающийся выполнял роль наблюдателя при выполнении работы, не внес вклада в обработку результатов эксперимента, не защитил лабораторную работу	Не зачтено	Не освоена (недостаточ- ный)
			обучающийся грамотно разобрался в ситуации, выявил причины случившейся ситуации, предложил несколько альтернативных вариантов выхода из сложившейся ситуации	Зачтено	Освоена (по- вышенный)
Уметь организовать и проводить экспериментальные исследования	ые исследования и катронных и х системах; пронеские средства и ации, автоматиза-и промышленных	Умение исполь- зовать совре- менную кон- трольно-	обучающийся активно участвовал в выполнении ра- боты, получил и обработал результаты эксперимента, проанализировал их, допустил не более 5 ошибок в ответах на вопросы при защите лабораторной работы	Зачтено	Освоена (базовый, повышенный)
на действующих мехатронных и робототехнических системах; про- ектировать технические средства и системы механизации, автоматизации и роботизации промышленных линий по производству пищевой		измерительную технику для контроля качества продукции и метрологического обеспечения	обучающийся выполнял роль наблюдателя при вы- полнении работы, не внес вклада в обработку резуль- татов эксперимента, не защитил лабораторную рабо- ту	Не зачтено	Не освоена (недостаточ- ный)
продукции; разрабатывать алгоритмическое и программное обес-	ГКейс-запание	Решение кейс- задание	обучающийся грамотно решил кейс-задания, но допустил одну ошибку	Зачтено	Освоена (по- вышенный)
печение средств и систем механизации, автоматизации и роботиза-			обучающийся правильно решил кейс-задания, но до- пустил две ошибки	Зачтено	Освоена (по- вышенный)
ции			обучающийся предложил вариант решения кейс- задания, ответил не на все вопросы, но в тех, на ко- торые дал ответ, не допустил ошибки	Зачтено	Освоена (базо- вый)

			обучающийся не предложил вариантов решения кейс-		Не освоена
			задания, в ответе допустил более пяти ошибок	Не зачтено	(недостаточ- ный)
Владеть навыками определения эффективности мехатронных и ро-	Собеседование	Ответы на во- просы	обучающийся ответил на все вопросы, но допустил одну ошибку	отлично	Освоена (по- вышенный)
бототехнических систем и определения путей совершенствования			обучающийся правильно ответил на все вопросы, но допустил две ошибки	хорошо	Освоена (по- вышенный)
механизации, автоматизации и ро-			обучающийся ответил не на все вопросы, но в тех, на	удовлетвори-	Освоена (базо-
ботизации промышленных линий			которые дал ответ, не допустил ошибки	тельно	вый)
по производству пищевой продукции; навыками составления описания принципов действия и конструкции устройств, проектируемых технических средств и систем механизации, автоматизации и роботизации промышленных линий по производству пищевой продукции; навыками разработки алгоритмического и программного обеспечения средств и систем автоматизации и роботизации промышленных линий по производств пищевой продукции			обучающийся в ответе допустил более пяти ошибок	неудовлетвори- тельно	Не освоена (недостаточ- ный)