МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНЫХ ТЕХНОЛОГИЙ»

УТВЕРЖДАЮ			
Проректор по учебной работе			
Василенко В.Н.			
(подпись) (Ф.И.О.)			
<u>«25» мая 2023 г.</u>			

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ МОДЕЛИРОВАНИЕ ЭНЕРГО - И РЕСУРСОСБЕРЕГАЮЩИХ ПРОЦЕССОВ В ХИМИЧЕСКОЙ ТЕХНОЛОГИИ. НЕФТЕХИМИИ И БИОТЕХНОЛОГИИ

Направление подготовки

18.03.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии

Направленность (профиль)

Инжиниринг химических и нефтехимических производств

Квалификация выпускника

бакалавр

Воронеж

1. Цели и задачи дисциплины

Целью дисциплины «Моделирование энерго - и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии» является формирование компетенций обучающегося в области профессиональной деятельности:

16 Строительство и жилищно-коммунальное хозяйство (в сферах: сбор, переработка, утилизация и хранение отходов производства; обеспечение экологически и санитарно-эпидемиологически безопасного обращения с отходами производства и потребления);

40 Сквозные виды профессиональной деятельности в промышленности (в сфере организации и проведения научно-исследовательских и опытно-конструкторских работ в области энерго- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии.

Дисциплина направлена на решение задач профессиональной деятельности следующих типов:

технологический; организационно-управленческий; проектный;

экспертно-аналитический.

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки/специальности 18.03.02 - «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии».

2. Перечень планируемых результатов обучения, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины в соответствии с предусмотренными компетенциями обучающийся должен:

Nº ⊓/⊓	Код компете	Формулировка	Код и наименование индикатора достижения
	нции	компетенции	компетенции
1	УК-2	Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	ИД1 _{Ук-2} — Определяет (исходя из действующих правовых норм) совокупность взаимосвязанных задач, решение которых обеспечивает достижение поставленной цели. ИД2 _{Ук-2} — Проектирует и выбирает оптимальные способы решения определенных задач, исходя из действующих правовых норм, имеющихся ресурсов и ограничений и публично представляет результаты решения конкретной задачи проекта
2	ПКв-6	Способен к обработке и анализу научно-технической информации и результатов исследований в сфере охраны окружающей среды и рационального природопользования	ИД1 _{ПКв-5} - Осуществляет поиск и анализ научно-технической информации по заданной тематике; знает и применяет нормативную и техническую документацию в сфере охраны окружающей среды и рационального природопользования ИД2 _{ПКв-5} — Применяет статистические методы обработки экспериментальных данных ИД3 _{ПКв-5} — Применяет методы математического моделирования и оптимизации технологических процессов в сфере охраны окружающей среды и рационального природопользования
3	ПКв-7	Способен к проведению экспериментов и	ИД1 _{ПКв-6} — Проводит лабораторные исследования, наблюдения и измерения, в соответствии с регламентами, стандартными

оформлению результатов исследований и разработок в сфере охраны окружающей среды и рационального природопользования

(аттестованными) методиками, требованиями нормативнотехнической документации, требованиями охраны труда и экологической безопасности

ИД2_{ПКв-6} – Осуществляет оформление результатов исследований и разработок в виде отчетов (разделов отчетов) в сфере охраны окружающей среды и рационального природопользования

Код и наименование индикатора достижения компетенции	Результаты обучения (показатели оценивания)
ИД1 _{УК-2} – Определяет (исходя из действующих правовых норм) совокупность взаимосвязанных задач,	Знает: принципы формулировки взаимосвязанных задач, обеспечивающих достижение поставленной цели;
решение которых обеспечивает достижение поставленной цели.	Умеет: формулировать совокупность взаимосвязанных задач, обеспечивающих достижение поставленной цели;
	Владеет: основными приемами анализа поставленных целей проекта,
ИД2 _{УК-2} – Проектирует и выбирает оптимальные способы решения определенных задач, исходя из	Знает: правовые нормы и имеющиеся ресурсы для оптимального решения конкретной задачи
действующих правовых норм,	Умеет: проектировать решение конкретной задачи проекта,
имеющихся ресурсов и ограничений и публично представляет результаты решения конкретной задачи проекта	Владеет: способностью проектировать решение конкретной задачи проекта,
ИД1 _{ПКв-5} - Осуществляет поиск и анализ научно-технической информации по заданной тематике;	Знает: основные источники научно-технической информации по заданной тематике
знает и применяет нормативную и	Умеет: критически анализировать возможные варианты решения
техническую документацию в сфере охраны окружающей среды и рационального природопользования	Владеет: навыками ведения научно-исследовательской и проектно-производственной деятельности в сфере экологии и природопользования в соответствии с основными нормативными актами
ИД2 _{ПКв-5} — Применяет статистические методы обработки экспериментальных данных	Знает: методы анализа и обработки необходимой информации, технических данных, показателей и результатов работы Умеет: проводить анализ и обработку необходимой информации, технических данных, показателей и результатов работы
	Владеет: навыками применения стандартных программных средств в области анализа необходимой информации, обобщения и систематизации данных
ИДЗ _{ПКв-5} – Применяет методы математического моделирования и	Знает: основные понятия и определения математического моделирования, цели и задачи моделирования
оптимизации технологических процессов в сфере охраны	Умеет: осуществлять структурный синтез модели, ее анализ; планировать эксперимент
окружающей среды и рационального природопользования	Владеет: способностью принимать участие в моделировании процессов с использованием стандартных пакетов
ИД1 _{ПКв-6} – Проводит лабораторные исследования, наблюдения и измерения, в соответствии с	Знает: базовые методы экологических исследований в области мониторинга окружающей среды Умеет: применять методы наблюдения, сбора и обработки
регламентами, стандартными (аттестованными) методиками, требованиями нормативно-	материала для экологических исследований в природных и лабораторных условиях;
технической документации, требованиями охраны труда и экологической безопасности	Владеет: навыками использования современного оборудования в полевых и лабораторных условиях
ИД2 _{ПКв-6} – Осуществляет оформление результатов исследований и разработок в виде отчетов (разделов	Знает: принципы представления профессиональной и научной информации
отчетов) в сфере охраны окружающей среды и рационального	Умеет: оценивать достоверность и значимость полученных результатов, представлять их в виде отчетов

природопользования	Владеет:	навыками	подготовки	результатов	профессионал	ьной и
	научной деятельно		сти, навыка	ами защиты	результатов	своей
	долгольно	ЮТИ				

3. Место дисциплины в структуре ОП ВО

Дисциплина относится к *части, формируемой участниками образовательных отношений* Блока 1 ООП. Дисциплина является обязательной к изучению

Дисциплина «Моделирование энерго - и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии» базируется на знаниях, умениях и компетенциях, сформированных при изучении дисциплин Неорганическая химия, Органическая химия, Экология, Процессы и аппараты «Математика», «Информатика».

Дисциплина «Моделирование энерго - и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии» является предшествующей для освоения преддипломной практики, выполнения выпускной квалификационной работы.

4. Объем дисциплины и виды учебных занятий

Общая трудоемкость дисциплины составляет 3 зачетных единицы.

Виды учебной работы	Всего часов	Семестр 7	
	акад	акад	
Общая трудоемкость дисциплины	108	108	
Контактная работа в т.ч.	47,95	47,95	
аудиторные занятия: Лекции	15	15	
в том числе в форме практической подготовки			
Лабораторные занятия (ПЗ)	30	30	
в том числе в форме практической подготовки			
Консультации текущие	0,75	0,75	
Консультация перед экзаменом	2,0	2,0	
Виды аттестации (экзамен)	0,2	0,2	
Самостоятельная работа:	26,25	26,25	
Изучение материала по конспекту лекций, учебнику (собеседование, тестирование, решение кейс-заданий)	14,25	14,25	
РПР:	12	12	
Разработка математической модели — Выполнение расчетов для РПР	3	3	
Оформление текстовой документации Оформление текстовой документации в	4	4	
виде графиков	3	3	
	2	2	
Контроль	33,8	33,8	

5 Содержание дисциплины

5.1 Содержание разделов дисциплины

Nº	Наименование разделов	Содержание раздела	Трудоемкость
п/п	дисциплины	(указывается в дидактических единицах)	раздела, часы
1.	Основные понятия и определения математического моделирования	Понятие модели и моделирования. Цели и задачи предмета математического моделирования. Классификация моделей. Оптимальное моделирование. Системное моделирование. Понятия	13
		системы и системного подхода. Свойства системы. Категории системного моделирования: структура, функция, состояние и т.п. Системный характер технологического объекта.	. •
2.	Моделирование типовых технологических процессов	Модель идеального смешения. Модель идеального вытеснения. Диффузионная модель: однопараметрическая и двухпараметрическая. Ячеечная модель с прямыми и обратными потоками. Комбинированные модели: застойные зоны, байпасирование, параллельное и последовательное соединение зон идеального перемешивания и идеального вытеснения. Технологическая линия. Каскад химических реакторов.	35,25
3.	Статистическое моделирование и анализ данных.	Теоретические аспекты и алгоритм предварительной обработки данных. Построение гистограммы. Критерий Пирсона. Основные положения структурного синтеза статистической модели и параметрического анализа модели. Критерий Фишера. Критерий Стьюдента. Планирование эксперимента и обработка экспериментальных данных	23
	Консультации текущие		0,75
	Консультация перед экзам	еном	2,0
	Виды аттестации (экзамен	0,2	
	Контроль		33,8

5.2 Разделы дисциплины и виды занятий

Nº ⊓/⊓	Наименование раздела дисциплины	Лекции, час	ЛЗ, час	СРО, час
1.	Основные понятия и определения математического моделирования	5	4	4
2.	Моделирование типовых технологических процессов	5	14	16,25
3.	Статистическое моделирование и анализ данных.	5	12	6
	Консультации текущие	0,75		
	Консультация перед экзаменом	2,0		
	Виды аттестации (экзамен)	0,2		
	Контроль			33,8

5.2.1 Лекции

N º ⊓/⊓	Наименование раздела дисциплины	Тематика лекционных занятий	Трудоемкость, час
1.	Основные понятия и определения математического моделирования	Понятие модели и моделирования. Цели и задачи предмета математического моделирования. Основные химические законы, применяемые в моделировании. Классификация моделей. Оптимальное моделирование. Системное моделирование. Понятия системы и системного подхода. Свойства системы. Категории системного моделирования: структура, функция, состояние и т.п. Системный характер технологического объекта. Основные методы математического анализа и моделирования, теоретического и экспериментального исследования. Современные информационные технологии, прикладные программы и базы данных для расчета технологических параметров оборудования и мониторинга природных сред	5
2.	Моделирование типовых технологических процессов	Модель идеального смешения. Модель идеального вытеснения. Диффузионная модель: однопараметрическая и двухпараметрическая. Ячеечная модель с прямыми и обратными потоками. Комбинированные модели: застойные зоны, байпасирование, параллельное и последовательное соединение зон идеального перемешивания и идеального вытеснения. Технологическая линия. Каскад химических реакторов. Моделирование энерго- и ресурсосберегающих процессов в промышленности	5
3.	Статистическое моделирование и анализ данных.	Теоретические аспекты и алгоритм предварительной обработки данных. Построение гистограммы. Критерий Пирсона. Основные положения структурного синтеза статистической модели и параметрического анализа модели. Критерий Фишера. Критерий Стьюдента. Планирование эксперимента и обработка экспериментальных данных	5

5.2.2 Лабораторный практикум

Nº	Наименование раздела		Трудоемкость,
п/п	дисциплины	Наименование практических работ	час
1.	Основные понятия и определения математического моделирования	Пример задачи моделирования.	4
2.	Моделирование типовых	Модель идеального смешения.	2
	технологических процессов	Модель идеального вытеснения	2
		Комбинированные задачи	4
		Численные методы решения нелинейных	2
		уравнений	

		Моделирование стационарных режимов	2
[Задача планирования при ограничениях	2
		на ресурсы	2
3.	Статистическое	Предварительная обработка данных.	4
	моделирование и анализ	Критерий Пирсона.	4
	данных	Дисперсионный анализ. Критерии	2
		Стьюдента и Фишера.	2
		Параметрический синтез и статистический	4
		анализ.	4
		Планирование эксперимента и обработка	2
		данных	۷

5.2.3 Практические занятия - не предусмотрены

5.2.4 Самостоятельная работа обучающихся (СРО)

	,		
№ п/п	Наименование раздела дисциплины	Вид СРО	СРО, час
1.	Основные понятия и определения математического моделирования	Изучение материала по конспекту лекций, учебнику	4
2.	Моделирование типовых технологических процессов	Изучение материала по конспекту лекций, учебнику	4,25
3.	Статистическое моделирование и анализ данных.	РПР №1 Изучение материала по конспекту лекций, учебнику	6

6 Учебно-методическое обеспечение дисциплины

6.1 Основная литература

- 1. Самойлов Н.А. Примеры и задачи по курсу "Математическое моделирование химико-технологических процессов".-СПб.: Лань,2013 https://e.lanbook.com/reader/book/37356/#4
- 2. Гумеров А.М., Математическое моделирование химико-технологических процессов: Учебное пособие. 2-е изд. переработ. _ СПб.: Лань,2014. 176 с. https://e.lanbook.com/reader/book/41014/#2 с.
- 3. Клинов, А.В. Лабораторный практикум по математическому моделированию химико-технологических процессов : учебное пособие / А.В. Клинов, А.В. Малыгин ; Казань : КГТУ, 2011. 99 с. : ил., табл. Библиогр.: с. 97. ; [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=258853
- 4. Клинов, А.В. Математическое моделирование химико-технологических процессов: учебное пособие / А.В. Клинов, А.Г. Мухаметзянова;. Казань: Казанский государственный технологический университет, 2009. 144 с.: ил., табл., схем. Библ. в кн. ISBN 978-5-7882-0774-2; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=270540.

6.2 Дополнительная литература

1. Закгейм, А.Ю. Общая химическая технология: введение в моделирование химико-технологических процессов : учебное пособие / А.Ю. Закгейм. - 3-е изд.,

перераб. и доп. - Москва : Логос, 2012. - 304 с. - (Новая университетская библиотека). - ISBN 978-98704-471-1 ; [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=84988 .

- 2. Зиятдинов, Н.Н. Математическое моделирование химико-технологических систем с использованием программы ChemCad: учебно-методическое пособие / Н.Н. Зиятдинов, Т.В. Лаптева, Д.А. Рыжов; сост. Н.Н. Зиятдинов, Т.В. Лаптева, Д.А. Рыжов; Федеральное агентство по образованию и др. Казань: Издательство КНИТУ, 2008. 161 с.: ил., табл., схем. Библиогр. в кн.; [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=259070.
- 3. Коробова Л.А. и др.Математическое моделирование. Практикум : учебное пособие. Воронеж, 2017 http://biblos.vsuet.ru/ProtectedView/Book/ViewBook/4350

6.3 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся.

Моделирование энерго - и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии [Электронный ресурс] : метод. указания для СРС по дисциплине "Моделирование энерго - и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии" / Воронеж. гос. ун-т инж. технол.; сост. С. Н. Черняева, Л. А. Коробова, Ю. А. Сафонова — Воронеж : ВГУИТ, 2014. - 35 с. — [ЭИ] http://biblos.vsuet.ru/ProtectedView/Book/ViewBook/2230

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Наименование ресурса сети «Интернет»	Электронный адрес ресурса
«Российское образование» - федеральный	https://www.edu.ru/
портал	
Научная электронная библиотека	https://elibrary.ru/defaultx.asp?
Национальная исследовательская	https://niks.su/
компьютерная сеть России	
Информационная система «Единое окно	http://window.edu.ru/
доступа к образовательным ресурсам»	
Электронная библиотека ВГУИТ	http://biblos.vsuet.ru/megapro/web
Сайт Министерства науки и высшего	https://minobrnauki.gov.ru/
образования РФ	
Портал открытого on-line образования	https://npoed.ru/
Электронная информационно-	https://education.vsuet.ru/
образовательная среда ФГБОУ ВО «ВГУИТ»	

6.5 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю),

включая перечень программного обеспечения, современных профессиональных баз данных и информационных справочных систем

При изучении дисциплины используется программное обеспечение, современные профессиональные базы данных и информационные справочные системы: ЭИОС университета, в том числе на базе программной платформы «Среда электронного обучения ЗКL», автоматизированная информационная база «Интернет-тренажеры», «Интернет-экзамен».

При освоении дисциплины используется лицензионное и открытое программное обеспечение — *н-p*, *OC Windows*, *OC ALT Linux*.

7 Материально-техническое обеспечение дисциплины

Необходимый для реализации образовательной программы перечень материально-технического обеспечения включает:

- лекционные аудитории (оборудованные видеопроекционным оборудованием для презентаций; средствами звуковоспроизведения; экраном; имеющие выход в Интернет);
- помещения для проведения лабораторных и практических занятий (оборудованные учебной мебелью);
- библиотеку (имеющую рабочие места для студентов, оснащенные компьютерами с доступом к базам данных и Интернет);
 - компьютерные классы.

Обеспеченность процесса обучения техническими средствами полностью соответствует требованиям ФГОС по направлению подготовки. Материально-техническая база приведена в лицензионных формах и расположена во внутренней сети по адресу http://education.vsuet.ru.

Аудитории для проведения занятий лекционного типа

Аудитории для проведе	ния занятий лекционного типа	1
Учебная аудитория № 6-31	- комплект мебели для	Microsoft Open License
для проведения	учебного процесса на 44	Microsoft WindowsXP
лекционных, практических,	места	Academic OPEN No Level #44822753
занятий семинарского типа,	Проектор Aser XD 1150 – 1	от 17.11.2008
групповых и	шт,	http://eopen.microsoft.com
индивидуальных	Экран для проектора – 1	
консультаций, текущего	шт,	Microsoft Office 2007 Russian
контроля и промежуточной	Компьютер Intel Core 2Duo E	73002ademic OPEN No Level #44822753
аттестации	Монитор 18 LG	от 17.11.2008
	·	http://eopen.microsoft.com
		Adobe Reader XI (бесплатное ПО)
		https://acrobat.adobe.com/ru/ru/
		acrobat/pdf-reader/volume-
		distribution.html
Учебная аудитория № 6-33	Комплект мебели для	Microsoft Open License
для проведения	учебного процессана 24	Microsoft WindowsXP
лекционных, практических,	места	Academic OPEN No Level #44822753
занятий семинарского типа,	Проектор Aser XD 1150 – 1	от 17.11.2008
групповых и	шт,	http://eopen.microsoft.com
индивидуальных	Экран для проектора – 1	
консультаций, текущего	шт,	Microsoft Office 2007 Russian
контроля и промежуточной	Компьютер Intel Core 2Duo	Academic OPEN No Level #44822753
аттестации	E7300; Монитор 18 LG	от 17.11.2008
		http://eopen.microsoft.com
		Adobe Reader XI (бесплатное ПО)

Учебная аудитория № 6-35 для проведения занятий лекционного типа, практических, лабораторных занятий, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Комплект мебели для учебного процесса на 32 места Компьютеры Corei5–2300 (10 шт), с доступом к сети интернет, Коммутатор Switch. Проектор Aser XD 1150 – 1 шт,	https://acrobat.adobe.com/ru/ru/acrobat/pdf-reader/volume-distribution.html Microsoft Open License Microsoft WindowsXP Academic OPEN No Level #44822753 οτ 17.11.2008 http://eopen.microsoft.com Microsoft Office 2007 Russian Academic OPEN No Level #44822753 οτ 17.11.2008 http://eopen.microsoft.com Adobe Reader XI (бесплатное ПО) https://acrobat.adobe.com/ru/ru/acrobat/pdf-reader/volume-
Учебная аудитория № 6-24 для проведения занятий лекционного типа, практических, лабораторных занятий, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Комплект мебели для учебного процесса на 48 мест . Компьютер Intel Core 2Duo E7300 - 11 штук; Монитор 18 LG – 11 штук.; Проектор Aser XD 1150. Компьютер Celeron-433. Плоттер HP DesignJet Рабочая станция Intel Celeron 335.	Microsoft Open License Microsoft WindowsXP Academic OPEN No Level #44822753 οτ 17.11.2008 http://eopen.microsoft.com Microsoft Office 2007 Russian Academic OPEN No Level #44822753 οτ 17.11.2008 http://eopen.microsoft.com Adobe Reader XI (бесплатное ΠΟ) https://acrobat.adobe.com/ru/ru/ acrobat/pdf-reader/volume- distribution.html

Для проведения лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации в распоряжении кафедры имеется:

Учебная аудитория	Комплект мебели для	Microsoft Open License
№ 6-35 для	учебного процесса на 32	Microsoft WindowsXP
проведения	места	Academic OPEN No Level #44822753 от
занятий	Компьютеры Corei5–2300 (10	17.11.2008
лекционного типа,	шт), с доступом к сети	http://eopen.microsoft.com
практических,	интернет, Коммутатор Switch.	
лабораторных	Проектор Aser XD 1150 – 1	Microsoft Office 2007 Russian Academic OPEN
занятий, занятий	шт,	No Level #44822753 от 17.11.2008
семинарского типа,		http://eopen.microsoft.com
групповых и		
индивидуальных		Adobe Reader XI (бесплатное ПО)
консультаций,		https://acrobat.adobe.com/ru/ru/acrobat/pdf-
текущего контроля		reader/volume-distribution.html
и промежуточной		
аттестации		

Аудитория для самостоятельной работы студентов

Учебная аудитория	Комплект мебели для	Microsoft Open License	
№ 6-30 для	учебного процесса на	Microsoft WindowsXP	
самостоятельной	2 места	Academic OPEN No Level #44822753 от	
работы студентов	Компьютер Р-4-3,0 – 2	17.11.2008	
	шт.	http://eopen.microsoft.com	
	Принтер HP LaserJet P		

2015 – 1 шт.	Microsoft Office 2007 Russian Academic OPEN No Level #44822753 στ 17.11.2008 http://eopen.microsoft.com
	Adobe Reader XI (бесплатное ПО) https://acrobat.adobe.com/ru/ru/acrobat/pdf-reader/volume-distribution.html
	КОМПАС 3D LT v 12, (бесплат.ПО) http://zoomexe.net/ofis/project/2767-kompas- 3d.html

Дополнительно, самостоятельная работа обучающихся, может осуществляться при использовании:

Читальные залы	Компьютеры со свободным	Microsoft Office Professional Plus 2010
библиотеки.	доступом в сеть Интернет и	Microsoft Open License Microsoft Office
	Электронными библиотечными и	Professional Plus 2010
	информационно справочными	Russian Academic OPEN 1 License No
	системами.	Level #48516271 от17.05.2011 г.
		http://eooen.microsoft.com
		Microsoft Office 2007 Standart,
		Microsoft Open License
		Microsoft Office 2007 Russian
		Academic OPEN No Level #44822753
		от 17.11.2008
		http://eopen.microsoft.com
		Microsoft Windows XP,
		Microsoft Open License Academic
		OPEN No Level #44822753 от
		17.11.2008 http://eopen.microsoft.com.
		Adobe Reader XI, (бесплатное ПО)
		httos://acrobat.adobe.com/ru/ru/
		acrobat/odfreader/volume-
		distribution.html

8 Оценочные материалы для промежуточной аттестации обучающихся по дисциплине

Оценочные материалы (ОМ) для дисциплины (модуля) включают в себя:

- перечень компетенций с указанием индикаторов достижения компетенций, этапов их формирования в процессе освоения образовательной программы;
 - описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности.

ОМ представляются отдельным комплектом и **входят в состав рабочей программы дисциплины (модуля)**.

Оценочные материалы формируются в соответствии с П ВГУИТ «Положение об оценочных материалах».

ПРИЛОЖЕНИЕ к рабочей программе

Моделирование энерго - и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

1. Организационно-методические данные дисциплины для заочной формы обучения

1.1 Объемы различных форм учебной работы и виды контроля в соответствии с учебным планом

Общая трудоемкость дисциплины (модуля) составляет 3_ зачетных единиц

Виды учебной работы	Всего часов	Семестр 9
	акад	акад
Общая трудоемкость дисциплины	108	108
Контактная работа в т.ч. аудиторные занятия:	22,2	22,2
Лекции	8	8
в том числе в форме практической подготовки		
Лабораторные занятия (ПЗ)	10	10
в том числе в форме практической подготовки		
Рецензирование контрольной работы	0,8	0,8
Консультации текущие	1,2	1,2
Консультация перед экзаменом	2	2
Виды аттестации (экзамен)	0,2	0,2
Самостоятельная работа:	79	79
контрольные работы	10	10
Подготовка к лабораторным занятиям: - проработка материала по конспекту лекций - проработка материала по учебнику	69	69
Контроль	6,8	6,8

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

по дисциплине/практике

Моделирование энерго - и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

1. Перечень компетенций с указанием этапов их формирования

В результате освоения дисциплины в соответствии с предусмотренными компетенциями обучающийся должен:

Nº	Код	Формулировка	Код и наименование индикатора достижения
п/п	компете	компетенции	компетенции
	нции		
1	УК-2	Способен определять	ИД1 _{Ук-2} – Определяет (исходя из действующих правовых норм)
		круг задач в рамках	совокупность взаимосвязанных задач, решение которых
		поставленной цели и	обеспечивает достижение поставленной цели.
		выбирать оптимальные	ИД2 _{УК-2} – Проектирует и выбирает оптимальные способы решения
		способы их решения,	определенных задач, исходя из действующих правовых норм,
		исходя из действующих	имеющихся ресурсов и ограничений и публично представляет
		правовых норм,	результаты решения конкретной задачи проекта
		имеющихся ресурсов и	
2	ПКв-6	ограничений	1404
2	I IKB-0	Способен к проведению	ИД1 _{пкв-6} - Осуществляет поиск и анализ научно-технической
		работ по обработке и	информации по заданной тематике в области энерго- и
		анализу научно- технической информации	ресурсосбережения химических и нефтехимических производств
		и результатов	ИД2 _{⊓кв-6} – Применяет статистические методы обработки
		исследований в области	экспериментальных данных
		энего- и	ИД3 _{ПКв-6} – Применяет методы математического моделирования и
		ресурсосберегающих	оптимизации технологических процессов в области энерго- и
		процессов в химической	ресурсосбережения химических и нефтехимических производств
		технологии, нефтехимии	
		и биотехнологии	
3	ПКв-7	Способен к проведению	ИД1 _{ПКв-7 –} Проводит лабораторные исследования, наблюдения и
		экспериментов и	измерения, в соответствии с регламентами, стандартными
		оформлению результатов	(аттестованными) методиками, требованиями нормативно-
		исследований и	технической документации, требованиями охраны труда и
		разработок в области энего- и	экологической безопасности
		ресурсосберегающих	ИД2пкв-7 — Осуществляет оформление результатов исследований и
		процессов в химической	разработок в виде отчетов (разделов отчетов) в сфере энего- и
		технологии, нефтехимии	ресурсосберегающих процессов в химической технологии,
		и биотехнологии	нефтехимии и биотехнологии

Код и наименование индикатора	Результаты обучения (показатели оценивания)		
достижения компетенции			
ИД1 _{УК-2} — Определяет (исходя из действующих правовых норм)	Знает: принципы формулировки взаимосвязанных задач, обеспечивающих достижение поставленной цели;		
совокупность взаимосвязанных задач, решение которых обеспечивает	Умеет: формулировать совокупность взаимосвязанных задач, обеспечивающих достижение поставленной цели;		
достижение поставленной цели.	Владеет: основными приемами анализа поставленных целей проекта,		
ИД2 _{УК-2} – Проектирует и выбирает оптимальные способы решения	Знает: правовые нормы и имеющиеся ресурсы для оптимального решения конкретной задачи		
определенных задач, исходя из	Умеет: проектировать решение конкретной задачи проека,		
действующих правовых норм,	Владеет: способностью проектировать решение конкретной задачи		
имеющихся ресурсов и ограничений и	проекта,		
публично представляет результаты			
решения конкретной задачи проекта			
ИД1 _{пкв-6} - Осуществляет поиск и	Знает: основные источники научно-технической информации по		
анализ научно-технической	заданной тематике		
информации по заданной тематике в			
области энерго- и ресурсосбережения	Умеет: критически анализировать возможные варианты решения		
химических и нефтехимических	Владеет: навыками ведения научно-исследовательской и проектно-		
производств	производственной деятельности в сфере энерго- и ресурсосбережения химических и нефтехимических производств		
ИД2 _{ПКв-6} – Применяет статистические	Знает: методы анализа и обработки необходимой информации,		
методы обработки	технических данных, показателей и результатов работы		
экспериментальных данных	Умеет: проводить анализ и обработку необходимой информации,		
	технических данных, показателей и результатов работы		
	Владеет: навыками применения стандартных программных средств		

ИДЗ _{ПКв-6} — Применяет методы математического моделирования и оптимизации технологических процессов в области энерго- и ресурсосбережения химических и	в области анализа необходимой информации, обобщения и систематизации данных Знает: основные понятия и определения математического моделирования, цели и задачи моделирования Умеет: осуществлять структурный синтез модели, ее анализ; планировать эксперимент Владеет: способностью принимать участие в моделировании процессов с использованием стандартных пачетов
нефтехимических производств ИД1 _{ПКв-7} _ Проводит лабораторные исследования, наблюдения и измерения, в соответствии с регламентами, стандартными (аттестованными) методиками, требованиями нормативнотехнической документации, требованиями охраны труда и экологической безопасности	процессов с использованием стандартных пакетов Знает: базовые методы экологических исследований в области мониторинга окружающей среды Умеет: применять методы наблюдения, сбора и обработки материала для экологических исследований в природных и лабораторных условиях; Владеет: навыками использования современного оборудования в полевых и лабораторных условиях
ИД2 _{ПКв-7} — Осуществляет оформление результатов исследований и разработок в виде отчетов (разделов отчетов) в сфере энего- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии	Знает: принципы представления профессиональной и научной информации Умеет: оценивать достоверность и значимость полученных результатов, представлять их в виде отчетов Владеет: навыками подготовки результатов профессиональной и научной деятельности, навыками защиты результатов своей деятельности

2. Паспорт оценочных материалов по дисциплине

Nº	Контролируемые моду-	пируемые моду- Индекс Оценочные средства		е средства	Технология оценки
п/п	ли/разделы/темы дисциплины	контролируемой компетенции (или ее части)	наименование	№№ заданий	(способ контроля)
1	Основные понятия и определения математического	УК-2	Тестовое задание	1 - 15	Компьютерное или бланочное тестирование
	моделирования		Кейс-задания	46 - 50	Контроль преподавателем
			Собеседование (экзамен)	61 - 74	Контроль преподавателем
2	Моделирование типовых технологических	ПКв-5	Тестовое задание	16 - 30	Компьютерное или бланочное тестирование
	процессов		Кейс-задания	51 - 55	Контроль преподавателем
			Собеседование (экзамен)	75 - 85	Контроль преподавателем
3	Статистическое моделирование и анализ данных	ПКв-36	Тестовое задание	30 - 45	Компьютерное или бланочное тестирование
			Кейс-задания	56 - 60	Контроль преподавателем
			Собеседование (экзамен)	86 - 95	Контроль преподавателем

3. Оценочные материалы для промежуточной аттестации

Аттестация обучающегося по дисциплине проводится в форме тестирования или письменного ответа и предусматривает возможность последующего собеседования (зачета/ экзамена).

3.1 Тесты (тестовые задания)

3.1.1 УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений

№ задания	Тестовое задание
1.	Универсальность - это
	а) Полнота отображения свойств объекта
	b) Соответствие параметров объектов вычисленных по модели их истинному значению
	с) Способность модели правильно отображать свойства объекта
	d) Показатель суммарных затрат на получение и использование моделей
	е) Определение неизвестных параметров из других источников
	f) Логическое следствие из некоторых фундаментальных законов природы
2.	Точность - это
	а) Соответствие параметров объектов вычисленных по модели их истинному значению
	b) Полнота отображения свойств объекта
	с) Способность модели правильно отображать свойства объекта
	d) Показатель суммарных затрат на получение и использование моделей
	е) Определение неизвестных параметров из других источников
	f) Логическое следствие из некоторых фундаментальных законов природы
3.	Адекватность - это
	а) Способность модели правильно отображать свойства объекта
	b) Соответствие параметров объектов вычисленных по модели их истинному значению
	с) Полнота отображения свойств объекта
	d) Показатель суммарных затрат на получение и использование моделей
	е) Определение неизвестных параметров из других источников
	f) Логическое следствие из некоторых фундаментальных законов природы
4.	Экономичность - это
	а) Показатель суммарных затрат на получение и использование моделей
	b) Соответствие параметров объектов вычисленных по модели их истинному значению
	с) Способность модели правильно отображать свойства объекта
	d) Полнота отображения свойств объекта
	е) Определение неизвестных параметров из других источников
	f) Логическое следствие из некоторых фундаментальных законов природы
5.	Система – это
	а) Совокупность объектов, связанных между собой и с окружающей средой, причем внутренние
	связи сильнее внешних b) Совокупность математических соотношений и закономерностей, описывающих взаимосвязь
	между количественными и качественными характеристиками объекта
	с) Упрощенная копия объекта, сохраняющая его важнейшие свойства, необходимые для
	решения поставленной задачи
	d) Совокупность устойчивых связей объекта обеспечивающих его целостность и сохраняющих
	основные свойства объекта, при различных внешних и внутренних изменениях
6.	Структура – это
	а) Совокупность устойчивых связей объекта обеспечивающих его целостность и сохраняющих
	основные свойства объекта, при различных внешних и внутренних изменениях
	b) Совокупность математических соотношений и закономерностей, описывающих взаимосвязь
	между количественными и качественными характеристиками объекта с) Упрощенная копия объекта, сохраняющая его важнейшие свойства, необходимые для
	решения поставленной задачи
	d) Совокупность объектов, связанных между собой и с окружающей средой, причем внутренние
	связи сильнее внешних
7.	Установить правильную последовательность этапов математического моделирования
	1) постановка задачи
	2) изучение теоретических основ процесса
	3) составление уравнений
	4) выбор алгоритма и решение модели
	5) анализ полученной информации
	6) анализ соответствию экспериментальных данных
	Ответ: 1,2,3,4,5,6

8.	Метод составления математического описания для уравнения и исследования объектов узком диапазоне изменения входных и выходных переменных это а) экспериментальный b) комбинированный c) аналитический	3 В					
9.	Общим требованием для всех математических моделей является а) реализуемая возможность составления дифференциальных уравнений b) число уравнений, включаемых в описание, должно быть равно числу находими переменных	<u>ых</u>					
	с) обязательное наличие физической модели процесса в уменьшенной форме						
10.	свойствами	их					
	1. модели с сосредоточенными 1. используются для нестационар- параметрами ных процессов						
	2. модели с распределенными 2. изменяются как во времени, параметрами так и в пространстве						
	3. статические модели 3. используются в стационарных условиях						
	4. динамические модели 4. отражают изменения объекта во времени						
11.	Ответ 1-1, 2-2, 3-3, 4-4 Метод аналитического составления моделей описания с одновременным проведением экспериментальных исследований это						
	а) комбинированный b) аналитический c) экспериментальный						
12.	Обыкновенные дифференциальные уравнения обычно используют						
	а) для математического описания нестационарных режимов работы объектов сосредоточенными параметрами b) для математического описания стационарных режимов работы объектов сосредоточенными параметрами	c c					
13.	Для каких моделей основные переменные процесса изменяются как во времени, так пространстве <u>а) с распределенными параметрами</u> b) статические модели c) с сосредоточенными параметрами	ИВ					
14.	Какие модели отражают работу объекта в стационарных условиях а) статические b) динамические c) с распределенными параметрами						
15.	Какие модели отражают изменения объекта во времени <u>а) динамические</u> b) статические c) с сосредоточенными параметрами						

3.1.2 ПКв-6 Способен к проведению работ по обработке и анализу научнотехнической информации и результатов исследований в области энего- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

№ задания	Тестовое задание						
16.	Для какого реактора используется следующая математическая модель на примере реакции A→P→Д						
	$\frac{dC_A}{dt} + V_x \frac{dC_A}{dx} = -k_1 C_A$ $\frac{dC_P}{dt} + V_x \frac{dC_P}{dx} = k_1 C_A - k_2 C_P$ $\frac{dC_A}{dt} + V_x \frac{dC_A}{dx} - k_2 C_P$						
	а) реактор идеального вытеснения в изотермическом режиме b) реактор идеального смешения в изотермическом режиме c) стационарный реактор идеального вытеснения						
17.	Впишите слово Число независимых строк или столбцов преобразованной матрицы это матрицы						
40	Ответ: ранг						
18.	В основе построения математической модели кинетики сложной химической реакции лежит уравнение <u>а) $X \cdot V^s = \omega$</u>						
	b) $V^s = \begin{bmatrix} \kappa_1 \cdot C_A \\ \kappa_2 \cdot C_P \end{bmatrix}$ c) $U_{HK} = X_{HK} \cdot X^{-1}_{K}$						
19.	В уравнении X · V ^s = <i>O</i> V ^s это <u>а) вектор скоростей по стадиям</u> b) вектор скоростей по компонентам c) матрица стехиометрических коэффициентов						
20.	Установить соответствие между математическими знаками и их записями в матрице стехиометрических коэффициентов сложной химической реакции						
	а) знак « - » 1) если вещество расходуется						
	b) знак « + » 2) если вещество образуется						
	Ответ: a-1, b-2						
21.	При построении математической модели кинетики сложной химической реакции обратимость реакции по стадии учитывается <u>а) вектором скоростей по стадиям</u> b) вектором скоростей по компонентам c) матрицей стехиометрических коэффициентов						
22.	Выбрать уравнение, устанавливающее связь между степенью завершенности химической реакции и концентрацией компонентов а) $C = C_0 + X \cdot \rho$ b) $X \cdot V^s = \omega$ c) $U_{HK} = X_{HK} \cdot X^{-1}_{K}$						

24.	Для двухстадийной последовательной реакции первого порядка А→Р→Д концентрация вещества Р будет
	а) в начальный момент времени будет расти, а затем падает b) уменьшается c) увеличивается
25	Для какого типа реактора используется следующая математическая модель для реакции $A \!\!\to\!\! P \!\!\to\!\! D$
	$\frac{1}{t}(C_{Ao} - C_A) + k_1 C_A = 0$ $\frac{1}{t}(-C_P) + k_1 C_A - k_2 C_P = 0$
	$\frac{1}{t}(-C_{\mathcal{I}})+k_{1}C_{\mathcal{A}}=0$ а) стационарный реактор идеального смешения
	b) реактор идеального смешения в изотермическом режиме c) реактор идеального вытеснения в изотермическом режиме
26	Число компонентов вектора скоростей по компонентам определяется а) количеством веществ b) количеством стадий c) числом компонент вектора скоростей по стадиям
27	Каждая компонента вектора по стадиям определяется <u>а) как скорость по стадии, т.е. произведение соответствующей константы скорости реакции на концентрацию веществ</u> <u>b) количеством веществ</u> с) числом строк матрицы стехиометрических коэффициентов
28	Число дифференциальных уравнений математической модели кинетики сложной химической реакции определяется <u>а) числом ключевых веществ</u> <u>b) количеством стадий</u> <u>c) количеством веществ</u>
29	В уравнении $C_{HK} = C_{HK}^0 + U_{HK}(C_K - C_K^0)$ U_{HK} это <u>а) матрица преобразования</u> b) вектор концентрации веществ в начальный момент времени с) вектор концентрации неключевых веществ
30	Установить соответствие в формуле $X \cdot V^s = \omega$ между обозначением характеристик и их наименованием
	 1. X 1. матрица стехиометрических коэффициентов 2. Vs 2. вектор скоростей по стадиям 3. \(\omega \) 3. вектор скоростей по компонентам Ответ: 1-1, 2-2, 3-3

3.1.3 ПКв-7 Способен к проведению экспериментов и оформлению результатов исследований и разработок в области энего- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

пефтехи	WIND IN CHOTEXHOLIDINI
Nº	Тестовое задание
задания	
31	Как называется отклонение результата измерения от истинного значения измеряемой величины?
	а) <u>погрешность измерения:</u>
	b) неточность измерения
	с) искажение измерения

32	Абсолютная погрешность имеет размерность
	а) в процентах
	b) в долях c) <u>в единицах измеряемой физической величины</u>
33	Что такое измерение?
33	а) сравнение измеряемой величины с исходной величиной;
	b) процесс получения опытным путем числового соотношения между измеряемой величиной и
	значением, принятым за единицу;
34	с) сравнение эталона и средства измерения Что является наиболее близким к истинному значению измеряемой величины при многократных
34	измерениях одной и той же величины
	а) среднее геометрическое;
	b) <u>среднее арифметическое;</u>
	с) среднее квадратичное отклонение
35	Программа, которая позволяет по данным об источниках выброса примесей и условиях
	местности рассчитать разовые приземные концентрации примесей при неблагоприятных
	условиях это a) УПРЗА «Эколог»
	<u>а) УПРЭА «Эколог»</u> b) «2-ТП-воздух»
	c) «2-ТП-воздух»
36	Какие из перечисленных программ обеспечивают формирование отчета об охране
	атмосферного воздуха и инвентаризации и накопления отходов производства
	а) Программы «2-ТП-воздух», «2-ТП-отходы» серии «Эколог»
	b) Унифицированная программа расчета загрязнения атмосферы и почвы
	с) Программа прогноза последствий аварий
37	Какая из перечисленных программ позволяет осуществить оперативный прогноз последствий
	аварийных выбросов
	a) ППА b) VПР3A «Эконог»
	b) УПРЗА «Эколог» c) «2-ТП-воздух»
	с) «2-11-воздух»
38	Возможность установления связи между типами данных и выделения пространственных
	взаимоотношений между объектами на карте представляет
	a) FUC
	b) ОБУВ c) ПДВ
39	«Методику расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в
	выбросах предприятий» реализует компьютерная программа
	а) УПРЗА «Эколог»
	b) «2-ТП-воздух»
	c) ППА
40	d) «Интеграл» Каждая из изолиний карты полей концентраций вредных веществ соответствует
40	а) определенной доле ПДК загрязняющего воздух вещества
	b) определенной высоте рельефа местности
	с) определенному объему выбросов загрязняющих веществ
41	Компьютерная программа ППА серии «Эколог» предназначена
	а) для прогноза последствий аварий, связанных с попаданием в окружающую среду
	ядовитых веществ
	b) для подбора приборов и автоматизированных средств контроля для дистанционного
	мониторинга c) для прогноза потребления атмосферного воздуха для технологических нужд
42	Представление данных на компьютерной карте получило название
	а) географической информационной системы
	b) глобальной информационной системы
	с) информационного обеспечения
43	Информационное обеспечение мониторинга окружающей среды включает в себя (выберете
	несколько правильных ответов)
	а) сбор информации
	b) хранение информации c) алгоритм обработки информации
	с) алгоритм оораоотки информации d) анализ информации

44	Результатом расчета по программе УПРЗА «Эколог» являются (выберете несколько
	правильных ответов):
	а) значения приземных концентраций
	b) карты-схемы, на которых значения концентраций загрязняющих веществ изображены в
	виде изолиний в долях ПДК
	с) высота и диаметр устья источника
	в) объем и температура выходящей газовоздушной смеси
45	Тесноту линейной связи между двумя параметрами количественно характеризует
	коэффициент парной () (впишите слово)
	Ответ: корреляции

3.2 Кейс-задания

3.2.1 УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений

Номер задания	Формулировка задачи						
46	Задание: напишите вектор скоростей по стадиям для химической реакции $A \xrightarrow{K_1} P_1 \\ P_1 \xrightarrow{K_2} P_2 \\ P_2 \xrightarrow{K_1} J_1 + E$ Решение: Число компонентов вектора скоростей по стадиям $V^{(s)}$ равно числу стадий. Каждая компонента определяется как произведение константы скорости химической реакции на концентрацию исходных веществ в степени стехиометрического коэффициента. Имеем $V^{(s)} = \begin{bmatrix} V_1^{(s)} \\ V_2^{(s)} \\ V_3^{(s)} \end{bmatrix} = \begin{bmatrix} k_1 \cdot C_A \\ k_2 \cdot C_{P_1} \\ k_3 \cdot C_{P_2} \end{bmatrix}$						
47	$\begin{bmatrix} V_2 & V_3^{(S)} \end{bmatrix} & \begin{bmatrix} k_2 & C_{P_1} \\ k_3 & C_{P_2} \end{bmatrix}$ Задание: напишите вектор скоростей по стадиям для химической реакции $A+B \xrightarrow{K_1} P_1$						
	$P_1 \xrightarrow{K_2} \mathcal{I}_1 + E$						
	Решение:						
	Число компонентов вектора скоростей по стадиям V ^(s) равно числу стадий. Каждая компонента определяется как произведение константы скорости химической реакции на концентрацию исходных веществ в степени стехиометрического коэффициента.						
	Имеем						
	$\mathbf{V}^{(s)} = \begin{bmatrix} V_1^{(S)} \\ V_2^{(S)} \end{bmatrix} = \begin{bmatrix} k_1 \cdot C_A \cdot C_B \\ k_2 \cdot C_{P_1} \end{bmatrix}$						
48	Задание: составьте матрицу стехиометрических коэффициентов для химической						

реакции

Решение:

Число строк матрицы стехиометрических коэффициентов X определяется числом веществ, участвующих в реакции, число столбцов — числом стадий. Стехиометрический коэффициент берется со знаком «-», если вещество на стадии расходуется, со знаком «+» - если образуется.

Имеем

$$\begin{array}{c|cccc}
A & -1 & 0 \\
B & -1 & 0 \\
X & P_1 & 1 & -1 \\
\Pi & 0 & 1 \\
E & 0 & 1
\end{array}$$

49 Задание: составьте матрицу стехиометрических коэффициентов для химической реакции

$$A + 2B \xrightarrow{K_1} P_1$$

$$P_1 \xrightarrow{K_2} 2\Pi + K$$

Решение:

Число строк матрицы стехиометрических коэффициентов X определяется числом веществ, участвующих в реакции, число столбцов — числом стадий. Стехиометрический коэффициент берется со знаком «-», если вещество на стадии расходуется, со знаком «+» - если образуется.

Имеем

$$\begin{array}{c|cccc}
A & -1 & 0 \\
B & -2 & 0 \\
X = P_1 & 1 & -1 \\
\Pi & 0 & 2 \\
E & 0 & 1
\end{array}$$

3адание: определите константу скорости химической реакции по экспериментальным данным

$$A \xrightarrow{K_1} P_1$$

Время	C_A	
0		1
1		0,78
2		0,61
3		0,47
4		0,37
5		0,29
6		0,23
Решение		

Закон изменения концентрации вещества А во времени описывается уравнением

$$C_{\rm A} = C_{\rm A0} \cdot {\rm e}^{-\kappa_1 \cdot t}$$

имеем

$$\ln C_{\rm A} = \ln C_{\rm A0} - \kappa_1 \cdot t$$

Это уравнение можно переписать:

$$y = a_0 + a \cdot x$$

$$a = \frac{\sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i - n \cdot \sum_{i=1}^{n} x_i \cdot y_i}{\left[\sum_{i=1}^{n} x_i\right]^2 - n \cdot \sum_{i=1}^{n} x_i^2}$$

$$a_0 = \frac{1}{n} \cdot (\sum_{i=1}^n y_i - a \cdot \sum_{i=1}^n x_i)$$

 $a=-\kappa_1$ a $0=InC_{A0}$

Применительно к исследуемой химической реакции и экспериментальным данным, имеем

Время	C _{A0}	InC _{A0}	x	у	x*y	x ²
0	1	0	0	0	0	0
1	0,78	-0,24846	1	-0,2484	-0,24846	1
			0,4943			
2	0,61		2	-0,4943	-0,98859	4
3	0,47	-0,75502	3	-0,75502	-2,26507	9
					425	
4	0,37	-0,99425	4	-0,9	-3,97701	16
5	0,29	-1,23787	5	-1,23787	-6,18937	25
6	0,23	-1,46968	6	-1,46968	-8,81806	36

$$\sum_{i} X_{i} \qquad 21$$

$$\sum_{i} Y_{i} \qquad -5,19958$$

$$\sum_{i} X_{i}^{*}Y_{i} \qquad -22,4866$$

$$\sum_{i} X_{i}^{2} \qquad 91$$

$$[\sum_{i} X_{i}^{2}]^{2} \qquad 441$$

$$= -0,25$$

a₀=

 $a=-\kappa_1$, таким образом $\kappa_1=0,25$

3.2.2 ПКе-6 Способен к проведению работ по обработке и анализу научно-технической информации и результатов исследований в области энего- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

-0,00169

№ задания	Формулировка задачи							
51	Задание: построить математическую модель кинетики химической реакции протекающей в изотермических условиях, с использованием понятия о ключевых веществах							
	$A \xrightarrow{K_1} P_1$ $P_1 \xrightarrow{K_1} P_2$							
	Р ₂ — ^{К₃} → Д Решение							
	Математическая модель кинетики сложной химической реакции в изотермических условиях может быть представлена системой (1):							
	$ \begin{cases} \frac{dC_{K}}{dt} = X_{K} \cdot V^{(s)}, \\ C_{HK} = C_{HKO} + U_{HK} \cdot (C_{K} - C_{KO}); \end{cases} \tag{1} $							
	$(C_{\rm HK} = C_{\rm HKO} + U_{\rm HK} \cdot (C_{\rm K} - C_{\rm KO}); \tag{1}$							
	где ^С ∗ –вектор концентрации ключевых веществ;							
	С _{нк} – вектор концентрации неключевых веществ;							
	${\it C}_{{\tt KG}}$, ${\it C}_{{\tt HKG}}$ значения соответствующих векторов при начальных условиях;							
	$X_{\mathbb{K}}$ – матрица стехиометрических коэффициентов ключевых веществ;							
	$V^{(s)}$ — вектор скоростей по стадиям.							
	$U_{HK=}X_{HK}\cdot X_{K}^{-1},\tag{2}$							
	где $X_{ extbf{hk}}$ — матрица стехиометрических коэффициентов не ключевых веществ. Первое уравнение системы (1) определяет структуру дифференциальных уравнений второе - структуру алгебраических.							
	Строим матрицу стехиометрических коэффициентов Х:							
	$X = \frac{P_1}{P_2} \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} X_{K}$ $X = \frac{P_1}{P_2} \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} X_{K}$							
	Компоненты, соответствующие независимым строкам преобразованной матриць стехиометрических коэффициентов, называют ключевыми.							
	В данном случае выбираем ключевыми веществами А, P_1 , P_2 , т.к. det $(X_\kappa) \neq 0$ следовательно, X_κ — матрица невырожденная и имеет обратную $X_\kappa^{(-1)}$;							

едовательно, $\frac{1}{2}$ — матрица невырожденная и имеет обратную $\frac{1}{2}$; Для исследуемой химической реакции конкретизируем первое уравнение системы (1):

$$\frac{d}{dt} \begin{bmatrix} C_{A} \\ C_{P_{1}} \\ C_{P_{2}} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \times \begin{bmatrix} K_{1} & \times & C_{A} \\ K_{2} & \times & C_{P_{1}} \\ K_{3} & \times & C_{P_{2}} \end{bmatrix}.$$
(3)

Выполнив перемножение и используя равенство векторов, получаем систему дифференциальных уравнений математической модели:

$$\begin{cases} \frac{dC_{A}}{dt} = -K_{1} \cdot C_{A}, \\ \frac{dC_{P_{1}}}{dt} = K_{1} \cdot C_{A} - K_{2} \cdot C_{P_{1}}, \\ \frac{dC_{P_{2}}}{dt} = K_{2} \cdot C_{P_{1}} - K_{3} \cdot C_{P_{2}}. \end{cases}$$
(4)

Конкретизируем второе уравнение системы (1). Для этого находим матрицы $X_{\kappa}^{(-1)}$ и $U_{{\scriptscriptstyle
m H}\kappa}$

Обратная матрица имеет вид:

$$X_{\kappa}^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Далее находим матрицу U_{HK} :

$$U_{\text{HK}} = X_{\text{HK}} \times X_{\text{HK}}^{(-1)} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1 \end{bmatrix}$$

Реализуем второе уравнение системы (1) при начальных условиях: t=0, $C_{\rm A}=C_{\rm AO}$, $C_{\rm P_1}=C_{\rm P_2}=C_{\rm A}=0$

$$\begin{bmatrix} C_{\mathcal{A}} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} -1 & -1 & -1 \end{bmatrix} \cdot \begin{bmatrix} C_{\mathcal{A}} & - & C_{\mathcal{A}\mathcal{O}} \\ C_{\mathcal{P}_{1}} & - & 0 \\ C_{\mathcal{P}_{2}} & - & 0 \end{bmatrix}.$$
 (5)

$$C_{\mathcal{A}} = C_{\mathsf{AO}} - C_{\mathsf{A}} - C_{\mathsf{P_1}} - C_{\mathsf{P_2}}$$

Уравнение (5) представляет алгебраическое уравнение исследуемой математической модели.

Система (4) и уравнение (5) составляют математическую модель кинетики исследуемой химической реакции:

$$\begin{cases} \frac{dC_{A}}{dt} = -K_{1} \cdot C_{A}, \\ \frac{dC_{P_{1}}}{dt} = K_{1} \cdot C_{A} - K_{2} \cdot C_{P_{1}}, \\ \frac{dC_{P_{2}}}{dt} = K_{2} \cdot C_{P_{1}} - K_{3} \cdot C_{P_{1}}, \\ C_{A} = C_{AO} - C_{A} - C_{P_{A}} - C_{P_{A}}. \end{cases}$$

3адание: построить математическую модель кинетики химической реакции, протекающей в изотермических условиях, с использованием понятия о ключевых веществах

$$A \xrightarrow{\kappa_{1}} P_{1}$$

$$P_{1} \xrightarrow{\kappa_{2}} P_{2}$$

$$P_{2} \xrightarrow{\kappa_{2}} \mathcal{A}$$

Решение

В основе построения математической модели лежит уравнение:

$$X \cdot V^{(s)} = w, \tag{1}$$

где X – матрица стехиометрических коэффициентов;

 $V^{(s)}$ – вектор скоростей по стадиям;

w – вектор скоростей по компонентам.

Матрица стехиометрических коэффициентов:

$$X = \begin{matrix} A \\ P_1 \\ P_2 \\ A \end{matrix} \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

Если стадия обратимая, то при формировании вектора $V^{(s)}$ – берется разность скоростей прямой и обратной реакции.

Таким образом, вектор скоростей по стадиям исследуемой химической реакции будет иметь вид:

$$V^{(s)} = \begin{bmatrix} V_{1}^{(s)} \\ V_{2}^{(s)} \\ V_{3}^{(s)} \end{bmatrix} = \begin{bmatrix} \kappa_{1} \cdot C_{A} - \kappa_{-1} \cdot C_{P_{1}} \\ \kappa_{2} \cdot C_{P_{1}} - \kappa_{-2} \cdot C_{P_{2}} \\ \kappa_{3} \cdot C_{P_{2}} - \kappa_{-3} \cdot C_{A} \end{bmatrix}$$
(2)

Вектор скоростей по компонентам:

$$w = \begin{bmatrix} w_{A} \\ w_{P_{1}} \\ w_{P_{2}} \\ w_{A} \end{bmatrix} = \frac{dC}{dt} = \frac{d}{dt} \begin{bmatrix} C_{A} \\ C_{P_{1}} \\ C_{P_{2}} \\ C_{A} \end{bmatrix}.$$
 (3)

где С – вектор концентраций компонентов реакции.

$$C = \begin{bmatrix} C_{A} & C_{P_{A}} & C_{P_{2}} & C_{A} \end{bmatrix}^{\mathsf{T}}$$

Определяем ранг матрицы X по методу Гаусса [2].

Ранг матрицы r(X)=3. Ключевые и неключевые вещества выбираем в соответствии с рангом матрицы. В данном случае ключевыми веществами являются вещества A, P_1 и P_2 , неключевым веществом — вещество Д.

Построим матрицы ключевых и неключевых веществ:

$$X_{\mathbf{k}} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}; \\ X_{\mathbf{H}\mathbf{k}} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}.$$

Определим структуру дифференциальных уравнений:

$$\frac{dC_{K}}{dt} = X_{K} \cdot V^{(s)}, \tag{4}$$

$$\frac{dC_{K}}{dt} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} K_{1}C_{A} - K_{-1}C_{P_{1}} \\ K_{2}C_{P_{1}} - K_{-2}C_{P_{2}} \\ K_{3}C_{P_{2}} - K_{-3}C_{A} \end{bmatrix}$$

$$\frac{dC_{K}}{dt} = \begin{bmatrix} -K_{1} & C_{A} + K_{-1} & C_{P_{1}} \\ K_{1} & C_{A} - K_{-1} & C_{P_{1}} - K_{2} & C_{P_{1}} + K_{-2} & C_{P_{2}} \\ K_{2} & C_{P_{1}} - K_{-2} & C_{P_{2}} - K_{3} & C_{P_{2}} + K_{-3} & C_{A} \end{bmatrix}$$

$$\begin{cases} \frac{dC_{A}}{dt} = -K_{1} \cdot C_{A} + K_{-1} \cdot C_{P_{1}}, \\ \frac{dC_{P_{1}}}{dt} = K_{1} \cdot C_{A} - (K_{-1} + K_{2}) \cdot C_{P_{1}} + K_{-2} \cdot C_{P_{2}}, \\ \frac{dC_{P_{2}}}{dt} = K_{2} \cdot C_{P_{1}} - (K_{-2} + K_{3}) \cdot C_{P_{2}} + K_{-3} \cdot C_{A}. \end{cases}$$
(5)

Определим структуру алгебраических уравнений:

$$C_{\text{HK}} = C_{\text{HKO}} + U_{\text{HK}} \cdot (C_{\text{K}} - C_{\text{KO}}),$$
 (6)
 $U_{\text{HK}} = X_{\text{HK}} \cdot X_{\text{K}}^{(-1)}.$ (7)

Определим обратную $X_{\kappa}^{(-1)}$ матрицу по одному из известных методов [2, 6].

$$X_{\kappa}^{(-1)} = \begin{bmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

$$U_{\text{HK}} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1 \end{bmatrix}$$

Начальные условия: t=0, $C_{P_1}=C_{P_2}=C_{\mathcal{A}}=0$

$$\begin{bmatrix} C_{\mathbf{A}} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} -1 & -1 & -1 \end{bmatrix} \cdot \begin{bmatrix} C_{\mathbf{A}} - C_{\mathbf{A}\mathbf{0}} \\ C_{\mathbf{P}_1} \\ C_{\mathbf{P}_2} \end{bmatrix}$$

$$C_{\mathrm{A}} = C_{\mathrm{AO}} - C_{\mathrm{A}} - C_{\mathrm{P_1}} - C_{\mathrm{P_2}}$$

Таким образом, математическая модель кинетики исследуемой химической реакции имеет вид :

$$\begin{cases} \frac{dC_{A}}{dt} = -\kappa_{1} \cdot C_{A} + \kappa_{-1} \cdot C_{P_{1}}, \\ \frac{dC_{P_{1}}}{dt} = \kappa_{1} \cdot C_{A} - (\kappa_{-1} + \kappa_{2}) \cdot C_{P_{1}} + \kappa_{-2} \cdot C_{P_{2}} \\ \frac{dC_{P_{2}}}{dt} = \kappa_{2} \cdot C_{P_{1}} - (\kappa_{-2} - \kappa_{3}) \cdot C_{P_{2}} + \kappa_{-3} \cdot C_{\mathcal{A}}, \\ C_{\mathcal{A}} = C_{AO} - C_{A} - C_{P_{1}} - C_{P_{2}}. \end{cases}$$
(8)

3адание: построить математическую модель кинетики химической реакции с протекающей в изотермических условиях, использованием понятия о степени завершенности реакции

$$A \xrightarrow{\kappa_1} P_1$$

$$P_1 \xrightarrow{\kappa_2} P_2$$

$$P_2 \xrightarrow{\kappa_{\mathsf{B}}} \mathcal{A}$$

Решение

Общий вид математической модели кинетики химической реакции протекающей в изотермических условиях, с использованием понятия о степени завершенности реакции имеет вид:

$$\begin{cases} \frac{d\rho}{dt} = V^{(s)} \\ C = C_0 + X \cdot \rho \end{cases} \tag{1}$$

Конкретизируем первое уравнение системы (1) для исследуемой химической реакции.

$$\frac{d\rho}{dt} = V^{(S)} = \begin{bmatrix} K_1 \cdot C_A \\ K_2 \cdot C_{P_1} \\ K_3 \cdot C_{P_2} \end{bmatrix}, \quad (2)$$

Определим концентрации веществ, используя второе уравнение системы (1):

$$\begin{bmatrix} C_A \\ C_{P_1} \\ C_{P_2} \\ C_{\mathcal{A}} \end{bmatrix} = \begin{bmatrix} C_{A0} \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix}$$

Имеем:

$$\begin{bmatrix} C_A \\ C_{P_1} \\ C_{P_2} \\ C_A \end{bmatrix} = \begin{bmatrix} C_{A0} \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -\rho_1 \\ \rho_1 & - & \rho_2 \\ \rho_2 & - & \rho_3 \\ & \rho_3 \end{bmatrix}$$

Выполнив сложение векторов в правой части и используя равенство векторов (два вектора равны, если равны их соответствующие компоненты), имеем:

$$\begin{cases}
C_A = C_{A0} - \rho_1 \\
C_{P_1} = \rho_1 - \rho_2 \\
C_{P_2} = \rho_2 - \rho_3 \\
C_{\mathcal{A}} = \rho_3
\end{cases}$$
(3)

Подставим уравнения, полученные для концентраций веществ (3) в уравнение (2), конкретизировав вектор ρ :

$$\frac{d}{dt} \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix} = \begin{bmatrix} \kappa_1 \cdot (C_{A0} - \rho_1) \\ \kappa_2 \cdot (\rho_1 - \rho_2) \\ \kappa_3 \cdot (\rho_2 - \rho_3) \end{bmatrix}$$

Имеем:

$$\begin{cases} \frac{d\rho_1}{dt} = K_1 \cdot (C_{A0} - \rho_1), \\ \frac{d\rho_2}{dt} = K_2 \cdot (\rho_1 - \rho_2), \\ \frac{d\rho_3}{dt} = K_3 \cdot (\rho_2 - \rho_3). \end{cases}$$

$$(4)$$

Системы (4) и (3) составляют математическую модель исследуемой реакции:

$$\begin{cases} \frac{d\rho_{1}}{dt} = K_{1} \cdot (C_{A0} - \rho_{1}), \\ \frac{d\rho_{2}}{dt} = K_{2} \cdot (\rho_{1} - \rho_{2}), \\ \frac{d\rho_{3}}{dt} = K_{3} \cdot (\rho_{2} - \rho_{3}), \\ C_{A} = C_{A0} - \rho_{1}, \\ C_{\rho_{1}} = \rho_{1} - \rho_{2}, \\ C_{\rho_{2}} = \rho_{2} - \rho_{3}, \\ C_{\mathcal{A}} = \rho_{3}. \end{cases}$$
(5)

3адание: построить математическую модель кинетики химической реакции протекающей в изотермических условиях в РИС

$$A + B \xrightarrow{\kappa_1} P$$
$$P \xrightarrow{\kappa_2} \mathcal{J}$$

где K_1 и K_2 – константы скоростей по первой и второй стадиям химической реакции.

Решение:

В изохорно-изотермических условиях основное уравнение процесса (1):

$$\frac{c-c_0}{\tau} = X \cdot f(C),\tag{1}$$

где T — среднее время пребывания частиц в аппарате;

Х – стехиометрическая матрица;

f(C) – кинетическая вектор-функция;

$$C = \left[C_A^0, C_B^0, C_P^0, C_A^0 \right]^T$$
 – вектор концентраций веществ А, В, Р, Д на входе в реактор.

Для исследуемой химической реакции матрица стехиометрических коэффициентов и кинетическая вектор-функция в формуле (1) имеют следующий вид:

$$X = \begin{bmatrix} -1 & 0 \\ -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$f(C) = \begin{bmatrix} f_1(C) \\ f_2(C) \end{bmatrix} = \begin{bmatrix} \kappa_1 \cdot C_A \cdot C_B \\ \kappa_2 \cdot C_P \end{bmatrix}$$

$$\frac{1}{\tau} \begin{bmatrix} C_{A} - C_{A}^{0} \\ C_{B} - C_{B}^{0} \\ C_{P} - C_{P}^{0} \\ C_{A} - C_{A}^{0} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \kappa_{1} \cdot C_{A} \cdot C_{B} \\ \kappa_{2} \cdot C_{P} \end{bmatrix}$$
(2)

Для дальнейших расчетов принимают $C^0_{
ho}=\ C^0_{
ho}=0$

Модель (2) можно упростить, используя понятие о ключевых веществах.

Исходя из структуры матрицы X в качестве ключевых веществ можно выбрать, например A и P (первую и третью строку), так как определитель, составленный из соответствующих им строк матрицы X отличен от нуля:

$$\begin{vmatrix} -1 & 0 \\ 1 & -1 \end{vmatrix} = (-1) \cdot (-1) - 1 \cdot 0 \neq 0$$

Тогда:

$$C = \begin{bmatrix} C_{\kappa} \\ C_{HK} \end{bmatrix}$$

 $_{\mathsf{ГДе}} \ \mathcal{C}_{\mathtt{K}} = [\mathcal{C}_{\mathtt{A}} \quad \mathcal{C}_{\mathtt{P}}]^{\mathtt{T}}$ – вектор концентраций ключевых веществ;

 $\mathcal{C}_{ ext{HK}} = [\mathcal{C}_{ extit{B}} \quad \mathcal{C}_{ extit{A}}]^\intercal$ — вектор концентраций неключевых веществ.

$$X = \begin{bmatrix} X_{\kappa} \\ X_{H\kappa} \end{bmatrix}, \tag{3}$$

где X_{κ} – матрица ключевых веществ;

 $X_{\!\scriptscriptstyle extsf{HK}\!-\!}$ матрица неключевых веществ.

Векторы $^{C_{
m HK}}$ и $^{C_{
m K}}$ связаны соотношением:

$$C_{\rm HK} = C_{\rm HKO} + U_{\rm HK} \cdot (C_{\rm K} - C_{\rm KO}) \tag{4}$$

где $U_{\rm HK}$ — матрица преобразования, определяемая по формуле (5):

$$U_{\rm HK} = X_{\rm HK} \cdot X_{\rm K}^{(-1)} \tag{5}$$

 $C_{\text{ко}}$, $C_{\text{нко}}$ векторы концентраций ключевых и не ключевых веществ на входе в реактор;

$$X_{\kappa}^{-1}$$
 – матрица обратная X_{κ} , т.е. $X_{\kappa\kappa} \cdot X_{\kappa}^{-1} = 1$

В соответствии с выбором ключевых веществ имеем:

$$X_{\kappa} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} X_{H\kappa} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

В рассматриваемом случае

$$X_{\kappa}^{-1} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}$$

Вычисляем $U_{\rm HK}$ по формуле (6):

$$U^{\mathsf{HK}} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$$

После выполненных преобразований формулы (2) и (4) принимают вид:

$$\frac{1}{\tau} \begin{bmatrix} C_A - C_A^0 \\ C_P \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} \kappa_1 \cdot C_A \cdot C_B \\ \kappa_2 \cdot C_P \end{bmatrix}, \tag{7}$$

$$\begin{bmatrix} C_B \\ C_{\mathcal{A}} \end{bmatrix} = \begin{bmatrix} C_B^0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} C_A - C_A^0 \\ C_P - 0 \end{bmatrix}$$

После перемножения:

$$\frac{1}{\tau} \begin{bmatrix} C_A - C_A^0 \\ C_P \end{bmatrix} = \begin{bmatrix} -\kappa_1 \cdot C_A \cdot C_B \\ \kappa_1 \cdot C_A \cdot C_B - \kappa_2 \cdot C_P \end{bmatrix}, \tag{8}$$

$$\begin{bmatrix} C_B \\ C_A \end{bmatrix} = \begin{bmatrix} C_B^0 - C_A^0 + C_A \\ C_A^0 - C_A - C_P \end{bmatrix}$$

По условию равенства векторов:

$$\begin{cases} \frac{1}{\tau} (C_{A} - C_{A}^{0}) = -\kappa_{1} \cdot C_{A} \cdot C_{B} \\ \frac{1}{\tau} C_{\mathcal{A}} = \kappa_{1} \cdot C_{A} \cdot C_{B} - \kappa_{2} \cdot C_{P} \\ C_{B} = C_{B}^{0} - C_{A}^{0} + C_{A} \\ C_{\mathcal{A}} = C_{A}^{0} - C_{A} - C_{P} \end{cases}$$
(9)

Система (9) – математическая модель кинетики химической реакции протекающей в изотермических условиях в РИС

3адание: привести математическую модель кинетики сложной химической реакции к виду в безразмерных переменных

$$\begin{cases} \frac{dC_{A}}{dt} = -K_{1} \cdot C_{A}, \\ \frac{dC_{P_{1}}}{dt} = K_{1} \cdot C_{A} - K_{2} \cdot C_{P_{1}}, \\ \frac{dC_{P_{2}}}{dt} = K_{2} \cdot C_{P_{1}} - K_{3} \cdot C_{P_{1}}, \\ C_{A} = C_{AO} - C_{A} - C_{P_{1}} - C_{P_{2}}. \end{cases}$$

Для исследования математической модели на ЭВМ полезно привести систему к виду в

безразмерных переменных, введя следующие замены:

$$C_A = \alpha \cdot X_A$$
 $C_{P_1} = \alpha \cdot X_{P_1}$

$$C_{P_2} = \alpha \cdot X_{P_2}, C_{\overline{A}} = \alpha \cdot X_{\overline{A}}, t = \sigma \cdot \tau$$

где X_{A} , X_{P_1} , X_{P_2} , X_{A} – безразмерные величины;

 τ – безразмерное время;

lpha и σ – коэффициенты, позволяющие преобразовать безразмерные величины к размерным.

$$\begin{cases} \frac{\alpha}{\sigma} \cdot \frac{dX_{\text{A}}}{dt} = -K_1 \cdot \alpha \cdot X_{\text{A}}, \\ \frac{\alpha}{\sigma} \cdot \frac{dX_{\text{P}_1}}{dt} = \alpha \cdot K_1 \cdot X_{\text{A}} - K_2 \cdot \alpha \cdot X_{\text{P}_1}, \\ \frac{\alpha}{\sigma} \cdot \frac{dX_{\text{P}_2}}{dt} = \alpha \cdot K_2 \cdot X_{\text{P}_1} - \alpha \cdot K_3 \cdot X_{\text{P}_2}, \\ \alpha \cdot X_{\text{A}} = C_{\text{AO}} - \alpha \cdot X_{\text{A}} - \alpha \cdot X_{\text{P}_1} - \alpha \cdot X_{\text{P}_2}. \end{cases}$$

Умножаем первые три уравнения на σ , четвертое уравнение делим на α .

Для определения α и σ принимаем:

$$\frac{c_{A0}}{\alpha}=1, K_1=1.$$

Введя
$$\lambda_1 = \frac{K_2}{K_1}$$
 и $\lambda_2 = \frac{K_B}{K_1}$ получаем

$$\begin{cases} \frac{dX_{\mathrm{A}}}{dt} = -X_{\mathrm{A}}, \\ \frac{dX_{\mathrm{P}_1}}{dt} = X_{\mathrm{A}} - \lambda_2 \cdot X_{\mathrm{P}_1}, \\ \frac{dX_{\mathrm{P}_2}}{dt} = \lambda_1 \cdot X_{\mathrm{P}_1} - \lambda_2 \cdot X_{\mathrm{P}_2}, \\ X_{\mathrm{A}} = 1 - X_{\mathrm{A}} - X_{\mathrm{P}_1} - X_{\mathrm{P}_2}. \end{cases}$$

Таким образом последняя система уравнений представлена в безразмерных переменных

3.2.4 ПКв-7 Способен к проведению экспериментов и оформлению результатов исследований и разработок в области энего- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

	Формулировка задачи										
56	Задание: рассчитайте средние арифметические значения рядов данных х и у, и коэффициент										
	парной корреляции между x и у (n=9)										
		1	2	3	4	5	6	7	8	9	
	х	0,12	0,22	0,33	0,41	0,51	0,61	0,75	0,83	0,95	
	У	2,2	3,1	4,5	5,6	6,7	7,9	8,8	9,9	10	
	Какую корреля	встроенну ции Вы буд			-	-	значений ицах Micro			парно	
	Решени Коэффиц	е циент парно	эй коррел	іяции рас	считывает	ся по фор	муле				
				где \overline{x}	$x_{xy} = \frac{\sum_{i=1}^{n} (x_i)^n}{\sqrt{\sum_{t=1}^{n} (x_t)^n}}$ $x_t = \frac{\sum_{i=1}^{n} x_{ii}}{n},$	$\overline{y} = \frac{\sum_{t=1}^{n} y_t}{n} \text{ cg}$	(\overline{y}) $(\overline{y})^2$ редние				
		аем средни значение х	c = 0,53	-		фициент г	іарной кор	реляции	:		
	среднее коэффиц Для расч	циент парно чета средні	их значен	ий и коэ	ффициент	-			ктронных	таблица	
7	среднее коэффиц Для расч Microsof	циент парно	их значен ользуются	ий и коэ встроенн	ффициент вые функц	ии =СРЗН	АЧ() и =КО	РРЕЛ()			
	среднее коэффиц Для расч Microsof Задание:	циент парно чета средні t Excel испо	их значен ользуются ге средни	ний и коэ встроенн не арифм	ффициент вые функц	ии =СРЗН	АЧ() и =КО	РРЕЛ()			
	среднее коэффиц Для расч Microsof Задание:	циент парно чета средні t Excel испо рассчитайт	их значен ользуются ге средни	ний и коэ встроенн не арифм	ффициент вые функц	ии =СРЗН	АЧ() и =КО	РРЕЛ()			
	среднее коэффиц Для расч Microsof Задание:	циент парно чета средні t Excel испо рассчитайт ррреляции	их значен ользуются ге средни между х и	ий и коэ встроенн не арифмо 1 у (n=9)	ффициент вые функц этические	ии =СРЗН	АЧ() и =КО я рядов да	РРЕЛ() энных х і	и у, и коэ	ффициє	

Коэффициент парной корреляции рассчитывается по формуле

$$r_{xy} = rac{\displaystyle\sum_{t=1}^n (x_t - \overline{x}) \cdot (y_t - \overline{y})}{\sqrt{\displaystyle\sum_{t=1}^n (x_t - \overline{x})^2 \displaystyle\sum_{t=1}^n (y_t - \overline{y})^2}}$$
 где $\overline{x}_i = rac{\displaystyle\sum_{t=1}^n x_{it}}{n}, \quad \overline{y} = rac{\displaystyle\sum_{t=1}^n y_t}{n}$ средние

Рассчитаем средние значения х и у, затем коэффициент парной корреляции:

среднее значение х = 11,67

среднее значение у = 7,89

коэффициент парной корреляции r_{xy} = 0,90

Для расчета средних значений и коэффициента парной корреляции в электронных таблицах Microsoft Excel используются встроенные функции =CP3HAY() и =KOPPEЛ()

Задание: оцените статистическую значимость коэффициента парной корреляции (r_{xy}) между х и у (n=10) (справочно: табличный критерий Стьюдента $t_{\text{табл.}}$ = 2,31), если r_{xy} =0,55

Решение

Для вывода о наличии или отсутствии статистически достоверной корреляционной связи между исследуемыми переменными проводим проверку его статистической значимости. Для этого используем критерий Стьюдента (t), рассчитываемый по формуле:

$$t = \frac{r\sqrt{N-2}}{\sqrt{1-r^2}}$$

Имеем

$$t = \frac{0.55\sqrt{10 - 2}}{\sqrt{1 - 0.55^2}} = 2.23$$

поскольку t=2,23 < t_{табл.}= 2,31 можно утверждать, что коэффициент парной корреляции статистически незначим.

Задание: оцените статистическую значимость коэффициента парной корреляции (r_{xy}) между х и у (n=10) (справочно: табличный критерий Стьюдента $t_{\text{табл.}}$ = 2,31), если r_{xy} =0,87

Решение

Для вывода о наличии или отсутствии статистически достоверной корреляционной связи между исследуемыми переменными проводим проверку его статистической значимости. Для этого используем критерий Стьюдента (t), рассчитываемый по формуле:

$$t = \frac{r\sqrt{N-2}}{\sqrt{1-r^2}}$$

Имеем

$$t = \frac{0.87\sqrt{10 - 2}}{\sqrt{1 - 0.87^2}} = 10.12$$

поскольку t=10,12 > t_{табл.}= 2,31 можно утверждать, что коэффициент парной корреляции статистически значим.

60 **Задание:** рассчитайте коэффициенты линейного регрессионного уравнения у=а₀+ах, если имеются следующие данные (n=9)

	1	2	3	4	5	6	7	8	9
х	2	3	4	5	6	7	9	15	20
У	5	7	8	9	11	12	14	17	23

Решение

коэффициенты линейного регрессионного уравнения $y=a_0+ax$

$$a = \frac{\sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i - n \cdot \sum_{i=1}^{n} x_i \cdot y_i}{\left[\sum_{i=1}^{n} x_i\right]^2 - n \cdot \sum_{i=1}^{n} x_i^2}$$

$$a_0 = \frac{1}{n} \cdot \left(\sum_{i=1}^n y_i - a \cdot \sum_{i=1}^n x_i \right)$$

a=4,5 a₀=0,92

3.5 Вопросы к собеседованию (экзамену)

УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений

Nº	Текст вопроса
61	Понятие модели и моделирования
62	Цели и задачи предмета математического моделирования.
63	Классификация моделей
64	Системное моделирование. Понятия системы и системного подхода.
65	Свойства системы. Категории системного моделирования: структура, функция, состояние, уровень.
66	Системный характер технологического объекта.
67	Этапы математического моделирования.
68	Требования, предъявляемые к математическим моделям.
69	Основные виды математических моделей
70	Классификация систем уравнений математического описания
71	Исследование химико-технологических и экологических систем методом математического моделирования с целью оптимизации параметров процесса, уменьшения образования побочных продуктов и отходов производства
72	Адекватность математической модели.
73	Составление уравнений математического описания.
74	Типовые математические структуры, используемые при математическом моделировании технологических систем в защите окружающей среды от загрязнения.

3.5.1 *ПКв-6* Способен к проведению работ по обработке и анализу научно-технической информации и результатов исследований в области энего- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

Nº	Текст вопроса
75	Матрица стехиометрических коэффициентов. Скорость по компонентам. Скорость по
	стадиям.
76	Полная система кинетических уравнений сложной химической реакции (общий подход)
77	Построение математической модели кинетики двухстадийной необратимой химической
	реакции и ее анализ
78	Учет обратимости химической реакции при математическом моделировании
79	Построение математической модели кинетики двухстадийной обратимой химической
	реакции и ее анализ
80	Метод ключевых веществ для упрощения математической модели кинетики химической
	реакции (на примере двухстадийной необратимой химической реакции А – Р - Д)
81	Метод ключевых веществ для упрощения математической модели кинетики химической
	реакции (на примере двухстадийной обратимой химической реакции А = Р = Д)
82	Аналитическое решение кинетической модели последовательной реакции первого
	порядка и ее анализ
83	Сущность обратной кинетической задачи. Обратная кинетическая задача для
	последовательной реакции первого порядка
84	Понятие о степени завершенности химических реакций. Вектор степени завершенности
	реакции. Связь между концентрациями веществ и степенью завершенности реакции
85	Построение математической модели кинетики сложной химической реакции с
	использованием понятия о степени завершенности реакции

3.5.2 ПКв-7 Способен к проведению экспериментов и оформлению результатов исследований и разработок в области энего- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

Текст вопроса							
Математические модели химических реакций в реакторах различных типов.							
Математическая модель кинетики реакции в реакторе идеального смешения (РИС)							
Математические модели химических реакций в реакторах различных типов.							
Математическая модель кинетики реакции в реакторе идеального вытеснения (РИВ)							
Метод Ньютона для решения нелинейных алгебраических уравнений							
Метод Рунге-Кутта для решения систем дифференциальных уравнений							
Основы корреляционного анализа							
Регрессия. Регрессионный анализ. Построение математической модели в форме							
регрессионного уравнения							
Целевая функция. Локальный и глобальный экстремумы							
Прямые методы поиска безусловного минимума							
Непрямые методы поиска безусловного минимума							
Понятие оптимизации в химико-технологических системах							

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Процедуры оценивания в ходе изучения дисциплины знаний, умений и навыков, характеризующих этапы формирования компетенций, регламентируются положениями:

- П ВГУИТ 2.4.03- Положение о курсовых экзаменах и зачетах;

- П ВГУИТ 4.1.02- Положение о рейтинговой оценке текущей успеваемости.

.

Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания для каждого результата обучения по дисциплине

	_							
Результаты обучения по	Предмет оценки	Показатель	Критерии оценивания	вания Шкала оценивания				
этапам формирования	(продукт или процесс)	оценивания	сформированности компетенций	Академическая	Уровень освоения			
компетен-				оценка или баллы	компетенции			
ций								
УК-2 Способен определя	УК-2 Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм,							
			ся ресурсов и ограничений					
			аимосвязанных задач, решение которых обеспечивае					
ИД2 _{ук-2} – Проектирует и выбира	ет оптимальные способ		ых задач, исходя из действующих правовых норм, име	ощихся ресурсов и ог	раничений и публично			
	I _		таты решения конкретной задачи проекта					
ЗНАТЬ: принципы	Тестовое задание	Результат	Набрано менее 50% правильных ответов	не	не освоена			
формулировки		тестирования		удовлетворительно	(недостаточный)			
взаимосвязанных задач,			Набрано 50% - 74,99% правильных ответов	удовлетворительно	освоена			
обеспечивающих достижение					(базовый)			
поставленной цели; правовые			Набрано 75% - 89.99% правильных ответов	хорошо	освоена			
нормы и имеющиеся ресурсы					(повышенный)			
для оптимального решения			Набрано 90% - 100% правильных ответов	отлично	освоена			
конкретной задачи					(повышенный)			
	Собеседование	Знание принципов	Обучающийся полностью раскрыл содержание					
	(экзамен)	формулировки	материала в объеме, предусмотренном	OTEMUNO				
		взаимосвязанных	программой, изложил материал грамотным языком	отлично				
		задач,	в определенной логической последовательности					
		обеспечивающих	Обучающийся твердо знает материал, грамотно и по					
		достижение	существ излагает его, но допускает в ответе	хорошо				
		поставленной цели;	некоторые неточности					
		правовые нормы и	Обучающийся неполно или непоследовательно					
		имеющиеся	раскрыл содержание материала, но показал общее					
		ресурсы для	понимание вопроса, недостаточно правильные	удовлетворительно				
		оптимального	формулировки базовых понятий					
		решения конкретной	Обучающийся не раскрыл содержание материала,	не				
		задачи	допускает грубые ошибки в формулировках	удовлетворительно				
			основных понятий дисциплины					
УМЕТЬ: формулировать			Обучающийся разобрался в предложенной					
совокупность взаимосвязанных			конкретной ситуации, самостоятельно решил	зачтено	освоена			
задач, обеспечивающих		Содержание решения	поставленную задачу на основе полученных знаний	341010	(повышенный)			
достижение поставленной	Кейс-задания	кейс-задания						
цели; проектировать решение		коло-задания	Обучающийся не разобрался в сложившейся		освоена			
конкретной задачи проекта			ситуации, не выявил причины случившегося и не	не зачтено	(повышенный)			
			предложил вариантов решения		(11022120111)			

ВЛАДЕТЬ: основными приемами анализа поставленных целей проекта,	Cogonyoung nounguing	Обучающийся разобрался в предложенной конкретной ситуации, самостоятельно решил поставленную задачу на основе полученных знаний	зачтено	освоена (повышенный)
способностью проектировать Кейс-задания решение конкретной задачи проекта,	Содержание решения кейс-задания	Обучающийся не разобрался в сложившейся ситуации, не выявил причины случившегося и не предложил вариантов решения	не зачтено	освоена (повышенный)

ПКв-6 Способен к проведению работ по обработке и анализу научно-технической информации и результатов исследований в области энего- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

ИД1_{⊓кв-6} - Осуществляет поиск и анализ научно-технической информации по заданной тематике в области энерго- и ресурсосбережения химических и нефтехимических производств

ИД2ПКв-6 – Применяет статистические методы обработки экспериментальных данных

ИДЗ_{ПКв-6} – Применяет методы математического моделирования и оптимизации технологических процессов в области энерго- и ресурсосбережения химических и

нефтехимических производств

		пефтел	химических производств		
ЗНАТЬ: основные источники	Тестовое задание	Результат	Набрано менее 50% правильных ответов	не	не освоена
научно-технической		тестирования		удовлетворительно	(недостаточный)
информации по заданной			Набрано 50% - 74,99% правильных ответов	удовлетворительно	освоена
тематике, методы анализа и					(базовый)
обработки необходимой			Набрано 75% - 89.99% правильных ответов	хорошо	освоена
информации, технических					(повышенный)
данных, показателей и			Набрано 90% - 100% правильных ответов	отлично	освоена
результатов работы, основные					(повышенный)
понятия и определения	Собеседование	Знание основных	Обучающийся полностью раскрыл содержание		
математического	(экзамен)	методов	материала в объеме, предусмотренном	отлично	освоена
моделирования, цели и задачи		математического	программой, изложил материал грамотным языком	סווויועונוס	(повышенный)
моделирования		моделирования,	в определенной логической последовательности		
		целей и задач	Обучающийся твердо знает материал, грамотно и		освоена
		моделирования	по существ излагает его, но допускает в ответе	хорошо	(повышенный)
			некоторые неточности		
			Обучающийся неполно или непоследовательно		
			раскрыл содержание материала, но показал общее	удовлетворительно	освоена
			понимание вопроса, недостаточно правильные	удовлотворительно	(базовый)
			формулировки базовых понятий		
			Обучающийся не раскрыл содержание материала,	не	не освоена
			допускает грубые ошибки в формулировках	удовлетворительно	(недостаточный)
			основных понятий дисциплины		
УМЕТЬ : критически			Обучающийся разобрался в предложенной		освоена
анализировать возможные			конкретной ситуации, самостоятельно решил	зачтено	(повышенный)
варианты решения, проводить	Кейс-задания		поставленную задачу на основе полученных знаний		()
анализ и обработку		кейс-задания	Обучающийся не разобрался в сложившейся		освоена
необходимой информации,			ситуации, не выявил причины случившегося и не	не зачтено	(повышенный)

технических данных, показателей и результатов работы, осуществлять структурный синтез модели, ее анализ; планировать эксперимент			предложил вариантов решения		
ВЛАДЕТЬ: навыками ведения научно-исследовательской и проектно-производственной деятельности в сфере энерго-	Кейс-задания	Построение математической модели, применение стандартного пакета	- математическая модель построена и задача решена с помощью пакета прикладных программ верно; по итогам решения сделаны верные выводы;	онгилто	освоена (повышенный)
и ресурсосбережения химических и нефтехимических производств, навыками применения стандартных программных средств в области анализа необходимой информации, обобщения и систематизации данных, способностью принимать участие в моделировании процессов с использованием стандартных пакетов		для синтеза и анализа модели.	- математическая модель построена верно, получено решение с помощью пакета прикладных программ близкое к верному (есть ошибки в ходе решения); по итогам решения сделаны верные выводы; -	хорошо	освоена (повышенный)
			математическая модель построена верно, задача не решена до конца, но ход решения правилен или задача решена, но не сделаны выводы по итогам решения	удовлетворительно	освоена (базовый)
			задача не решена	не удовлетворительно	не освоена (недостаточный)

ПКв-7 Способен к проведению экспериментов и оформлению результатов исследований и разработок в области энего- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

ИД1_{ПКв-7 –} Проводит лабораторные исследования, наблюдения и измерения, в соответствии с регламентами, стандартными (аттестованными) методиками, требованиями охраны труда и экологической безопасности

ИД2_{пкв-7} — Осуществляет оформление результатов исследований и разработок в виде отчетов (разделов отчетов) в сфере энего- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии

			· I		
ЗНАТЬ : базовые методы	Тестовое задание	Результат	Набрано менее 50% правильных ответов	не	не освоена
экологических исследований в		тестирования		удовлетворительно	(недостаточный)
области мониторинга			Набрано 50% - 74,99% правильных ответов	удовлетворительно	освоена
окружающей среды, принципы					(базовый)
представления			Набрано 75% - 89.99% правильных ответов	хорошо	освоена

профессиональной и научной					(повышенный)
информации			Набрано 90% - 100% правильных ответов	отлично	освоена (повышенный)
	Собеседование (экзамен)	Знание методик экологических исследований в области мониторинга	Обучающийся полностью раскрыл содержание материала в объеме, предусмотренном программой, изложил материал грамотным языком в определенной логической последовательности	отлично	освоена (повышенный)
		окружающей среды	Обучающийся твердо знает материал, грамотно и по существ излагает его, но допускает в ответе некоторые неточности	хорошо	освоена (повышенный)
			Обучающийся неполно или непоследовательно раскрыл содержание материала, но показал общее понимание вопроса, недостаточно правильные формулировки базовых понятий	удовлетворительно	освоена (базовый)
			Обучающийся не раскрыл содержание материала, допускает грубые ошибки в формулировках основных понятий дисциплины	не удовлетворительно	не освоена (недостаточный)
УМЕТЬ: применять методы наблюдения, сбора и обработки материала для			Обучающийся разобрался в предложенной конкретной ситуации, самостоятельно решил поставленную задачу на основе полученных знаний	зачтено	освоена (повышенный)
экологических исследований в природных и лабораторных условиях;, оценивать достоверность и значимость полученных результатов, представлять их в виде отчетов	Кейс-задания	Содержание решения кейс-задания	Обучающийся не разобрался в сложившейся ситуации, не выявил причины случившегося и не предложил вариантов решения	не зачтено	освоена (повышенный)
ВЛАДЕТЬ: навыками использования современного оборудования в полевых и лабораторных условиях,	Кейс-задания	Применение пакетов прикладных программ для статистического моделирования при	- математическая модель построена и задача решена с помощью пакета прикладных программ верно; по итогам решения проведен анализ и сделаны верные выводы;	ончилто	освоена (повышенный
навыками подготовки результатов профессиональной и научной деятельности, навыками защиты результатов своей деятельности		решении профессиональных задач	- математическая модель построена верно, получено решение с помощью пакета прикладных программ близкое к верному (есть ошибки в ходе решения); по итогам решения сделаны верные выводы;	хорошо	освоена (повышенный)
			математические модели построены верно, получены решения с помощью пакета прикладных программ близкие к верным; по результатам решения проведен анализ и сделаны верные выводы	удовлетворительно	освоена (базовый)

задачи не решены, сделаны неверные выводы;	не	не освоена
	удовлетворительно	(недостаточный)