МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНЫХ ТЕХНОЛОГИЙ»

УТВЕРЖДАЮ				
Проректор по учебной работе				
		Василенко В.Н.		
(подпись)		(Φ.N.O.)		
" 25"	05	2023 г.		

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физические основы теплотехники

Направление подготовки 16.03.03 Холодильная, криогенная техника и системы жизнеобеспечения

Направленность (профиль) подготовки <u>Техника низких температур</u>

Квалификация выпускника **Бакалавр**

Воронеж

1. Цели и задачи дисциплины

Целью освоения дисциплины «Физические основы теплотехники» является формирование компетенций обучающегося в области профессиональной деятельности.

Выпускник, освоивший программу бакалавриата, должен быть готов решать следующие профессиональные задачи:

расчетно-экспериментальная деятельность с элементами научно-исследовательской:

сбор и обработка научно-технической информации, изучение передового отечественного и зарубежного опыта по избранной проблеме;

анализ поставленной задачи и на основе подбора и изучения литературных источников;

участие в разработке теплофизических, математических и компьютерных моделей, предназначенных для выполнения исследований и решения научно-технических задач;

участие в расчетно-экспериментальных работах в составе научно-исследовательской группы на основе классических и технических теорий и

методов, достижений техники и технологий, в первую очередь, с помощью экспериментального оборудования, высокопроизводительных вычислительных систем и широко используемых в промышленности наукоемких компьютерных технологий;

составление описаний выполненных расчетно-экспериментальных работ и разрабатываемых проектов, обработка и анализ полученных результатов,

подготовка данных для составления отчетов и презентаций, подготовка докладов, статей и другой научно-технической документации;

участие в оформлении отчетов и презентаций, написании докладов и статей на основе современных офисных информационных технологий, текстовых и графических редакторов, средств печати;

проектно-конструкторская деятельность:

участие в проектировании машин и аппаратов с целью обеспечения их максимальной производительности, долговечности и безопасности, обеспечения надежности узлов и деталей машин и аппаратов;

участие в проектировании деталей и узлов машин и аппаратов с использованием программных систем компьютерного проектирования (CAD-систем) на основе эффективного сочетания передовых CAD/CAE-технологий и выполнения многовариантных CAE-расчетов;

участие в тепловых и механических расчетах машин и аппаратов с целью обеспечения их максимальной производительности, долговечности и безопасности, обеспечения надежности узлов и деталей машин и аппаратов;

участие в работах по технико-экономическим обоснованиям проектируемых машин, аппаратов и установок в целом;

участие в работах по составлению отдельных видов технической документации на проекты, их элементы и сборочные единицы;

сбор и обработка научно-технической информации, изучение передового отечественного и зарубежного опыта по избранной тематике;

производственно-технологическая деятельность:

участие в работах по эксплуатации и рациональному ведению технологических процессов в холодильных и криогенных установках, системах жизнеобеспечения;

проведение расчетно-экспериментальных работ по анализу характеристик конкретных низкотемпературных установок и систем, участие в использовании технологических процессов наукоемкого производства, контроля качества материалов, элементов и узлов низкотемпературных машин и установок различного назначения;

инновационная деятельность:

участие в использовании результатов научно-технических и проектно-конструкторских разработок в данном секторе экономики;

организационно-управленческая деятельность:

участие в организации работы, направленной на формирование творческого характера деятельности небольших коллективов, работающих в области холодильной и криогенной

техники и систем кондиционирования;

участие в работах по поиску оптимальных решений при создании отдельных видов продукции с учетом требований эффективной работы, долговечности, автоматизации, безопасности жизнедеятельности, качества, стоимости, сроков исполнения, конкурентоспособности;

участие в разработке планов на отдельные виды работ и контроль их выполнения.

2. Перечень планируемых результатов обучения, соотнесенных с планируемыми результатами освоения образовательной программы

Nº ⊓/⊓	Код компетенции	Содержание компетенции (результат освоения)	В резуль-	тате изучения учебной дисципли обучающийся должен:	1НЫ
		(1-1-)-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	знать	уметь	владеть
1	2	3	4	5	6
1	ПК-1	способность выявлять сущность научно- технических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их анализа соответствующий физикоматематический аппарат	основные закономерно- сти и способы передачи тепла; законы превра- щения тепловой энер- гии в механическую ра- боту; теорию теплооб- мена, основы массоб- мена; закономерности использования тепло- вой энергии в техноло- гических процессах, связанных с работой гидроприводов, ком- прессорных установок, двигателей внутреннего сгорания и технологиче- ского оборудования используемого в транс- портных и технологиче- ских машинах и обору-	выявлять сущность научно-технических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их анализа соответствующий физико-математический аппарат	навыками энергетического и техно- логического ис- пользования теп- ла; охраны окру- жающей среды и энергосбережения;
2	ПК-3	готовность выполнять расчетно- экспериментальные работы и решать научно-технические задачи в области холодильной, криогенной техники и систем жизнеобеспечения на основе достижений техники и технологий, классических и технических теорий и методов, теплофизических, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным процессам, машинам и аппаратам	довании закономерности и принцип работы тепловых процессов лежащих в основе расчета и выбора источника нагрева изделий при различных технологических процессах; тепломассобменые устройства основную терминологию и символику; топливо и основы горения; принципы работы и конструкции различных аппаратов, служащих для целей преобразования энергии топлива в тепловую и тепловой энергии в механическую; теплогенерирующие устройства, холодильную и криогенную технику	выполнять расчетно- экспериментальные работы и решать науч- но-технические задачи в области холодильной, криогенной техники и систем жизнеобеспече- ния на основе достиже- ний техники и техноло- гий, классических и технических теорий и методов, теплофизиче- ских, математических и компьютерных моде- лей, обладающих высо- кой степенью адекват- ности реальным про- цессам, машинам и аппаратам; анализиро- вать тепловые процес- сы в машинах и аппара- тах для разработки оп- тимальных режимов их работы в различных технологических систе- мах	навыками: экономии тепловой энергии применительно к холодочиспользующему оборудованию, технологических машин; основных направлениях экономии энергоресурсов; использовании вторичных энергоресурсов

3. Место дисциплины в структуре ОП ВО

Дисциплина «Физические основы теплотехники» относится к вариативной части блока 1 основной профессиональной образовательной программы по направлению подготовки 16.03.03 Холодильная, криогенная техника и системы жизнеобеспечения. Дисциплина является обязательной к изучению. Изучение дисциплины «Физические основы теплотехники» базируется на знаниях, умениях и компетенциях, сформированных при изучении дисциплин:

Математика

Физика

Химия

Дисциплина «Физические основы теплотехники»— является предшествующей для освоения дисциплин:

Теоретические основы холодильной техники и низкотемпературные машины

Основы кондиционирования воздуха

Объемные компрессорные и расширит ельные машины низкот емперат урных уст ановок

Теплообменные аппарат ы низкот емперат урных уст ановок

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 3 зачетных единиц.

Виды учебной работы	Всего академиче- ских часов, ак. ч	Семестр 4
Общая трудоемкость дисциплины	108	108
Контактная работа, в т.ч. аудиторные занятия:	55	55
Лекции	18	18
в том числе в форме практической подготовки	18	18
Практические занятия (ПЗ)	36	36
в том числе в форме практической подготовки	36	36
Консультации текущие	0,9	0,9
Вид аттестации (зачет)	0,1	0,1
Самостоятельная работа:	53	53
Изучение материалов по учебникам (собеседование, тестирование, решение кейс-заданий)	17	17
Изучение материалов, изложенных в лекциях (собеседование, тестирование, решение кейс-заданий)	18	18
Подготовка к защите по практическим занятиям (собеседование)	18	18

5 Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий 5.1 Содержание разделов дисциплины

№ п/п	Наименование ра дела дисциплин	Г Содержание раздела	Трудоемкость раздела, ак. часы
1	Техническая тер динамика	о- 1.1 Основные понятия и определения. Первый закон термодинамики. 1.2 Общие методы исследования процессов изменения состояния рабочих тел. Термодинамические процессы рабочих тел. 1.3 Сущность второго закона термодинамики, его основные формулировки	53

		1.4 Термодинамические циклы двигателей внутреннего сгорания, газотурбинных и паро-	
		силовых установок	
2	Оспови топпового	,	
	Основы теплопере-	2.1 Основные понятия и определения теории	
	дачи.	теплообмена.	
		2.2 Теплопроводность.	54
		2.3 Конвективный теплообмен.	34
		2.4 Лучистый теплообмен	
		2.5 Сложный теплообмен (Теплопередача)	
	Консультации текущи	10	0,9
	Зачет		0,1

5.2 Разделы дисциплины и виды занятий

№ п/п	Наименование раздела дисци- плины	Лекции, ак. час	ПЗ, ак.час	СРО, ак.час
1.	Техническая термодинамика	9	18	26
2.	Основы теплопередачи.	9	18	27

5.2.1 Лекции

№ п/п	Наименование раздела дис-	Тематика лекционных занятий	Трудоемкость, ак. час
	циплины	1.1 Основные понятия и определения. Первый закон термодинамики. Аналитическое выражение первого закона термодинамики. Внутренняя энергия. Работа и теплота как форма передачи энергии, р-v диаграмма. Энтальпия. Уравнение первого закона термодинамики для потока. Сущность научно-технических проблем, возникающих в ходе профессиональной деятельности, и привлечение для их анализа соответствующего физико-математического аппарата	2
1	Техническая термодинамика	1.2 Общие методы исследования процессов изменения состояния рабочих тел. Термодинамические процессы рабочих тел. Основные термодинамические процессы: изохорный, изобарный, изотермический, адиабатный, политропный. Свойства реальных газов, уравнения их состояния. Водяной пар. Диаграммы состояния водяного пара. Термодинамические процессы водяного пара. Основы выполнения расчетно-экспериментальных работ и решения научнотехнических задач в области холодильной, криогенной техники и систем жизнеобеспечения на основе достижений техники и технологий, классических и технических теорий и методов, теплофизических, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным процессам, машинам и аппаратам 1.3 Сущность второго закона термодинамики, его основные формулировки. Т-ѕ диаграмма. Прямой и обратный циклы Карно, их назна-	2
		чение. Термический КПД и холодильный коэффициент. 1.4 Термодинамические циклы двигателей внутреннего сгорания, газотурбинных и паросиловых установок	2
		2.1 Основные понятия и определения теории теплообмена. Механизмы передачи теплоты.	1
2	Основы тепло- передачи	2.2 Теплопроводность. Закон Фурье. Коэффициент теплопроводности. Дифференциальное уравнение теплопроводности. Теплопроводность при стационарном режиме. Теплопроводность плоских и цилиндрических стенок.	2
		2.3 Конвективный теплообмен. Уравнение Ньютона-Рихмана. Ко- эффициент теплоотдачи. Основы теории подобия. Физический смысл основных критериев подобия. Теплоотдача при свободном и вынужденном движении жидкости. Теплоотдача в неограниченном объеме. Теплообмен при изменении агрегатного состояния: кипении и конденсации. Факторы, влияющие на теплообмен при конденсации	2
		2.4 Лучистый теплообмен. Основные законы лучистого теплообме-	2

	на. Защита от теплового излучения.	
	2.5 Сложный теплообмен (Теплопередача) Теплопередача через	
	плоскую, цилиндрическую, сферическую стенки. Коэффициент теп-	2
	лопередачи. Пути интенсификации теплопередачи.	

5.2.2 Лабораторный практикум не предусмотрен

5.2.3 Практические занятия

№ п/п	Наименование раздела дис- циплины	Наименование практических работ	Трудоемкость, ак. час
		Определение изобарной теплоемкости воздуха и удельной теплоты парообразования воды	4
	Техническая	Исследование равновесных процессов в идеальных газах	6
1.	термодинамика	Определение термодинамических параметров водяного пара. Термодинамические таблицы водяного пара.	4
		Сравнительный анализ циклов двигателей внутреннего сгорания, паро- и газотурбинных установок	4
		Конвективный теплообмен при свободном и вынужденном движении воздуха	4
		Определение степени черноты тела	4
2	Основы тепло- передачи	Определение коэффициента теплоотдачи и удельного теплового потока при теплообмене между горячими газами и холодным теплоносителем через разделяющую их стенку	6
		Определение поверхности нагрева рекуперативного теплообменного аппарата	4

5.2.4 Самостоятельная работа обучающихся (СРО)

№ п/п	Наименование раздела дис- циплины	Вид СРО	Трудоемкость, ак. час
1.	Техническая термодинамика	Изучение материалов по учебникам (собеседование, тестирование, решение кейс-заданий) Изучение материалов, изложенных в лекциях (собеседование, тестирование, решение кейс-заданий) Подготовка к защите по практическим занятиям (собеседование)	8 9 9
2.	Основы тепло- передачи	Изучение материалов по учебникам (собеседование, тестирование, решение кейс-заданий) Изучение материалов, изложенных в лекциях (собеседование, тестирование, решение кейс-заданий) Подготовка к защите по практическим занятиям (собеседование)	9 9 9

6 Учебно-методическое и информационное обеспечение дисциплины

6.1 Основная литература

- 1. Гдалев А.В., Козлов А.В., Сапронова Ю.И., Майоров С.Г. Теплотехника. Научная книга 2012 Электронная библиотечная система «IPRbook» http://www.iprbookshop.ru/6350.html
- 2. Лекции по теплотехнике. Оренбургский государственный университет, ЭБС АСВ, 2011– Электронная библиотечная система «IPRbook» http://www.iprbookshop.ru/21604.html
- 3. Зеленцов Д.В. Техническая термодинамика. Самарский архитектуностроительный университет, ЭБС АСБ, 2012 — *Электронная библиотечная система* «IPRbook»

http://www.iprbookshop.ru/20525.html

4. Круглов Г.А., Булгакова Р.И., Круглова Е.С. Теплотехника. – Лань ,2012 – Элек-

6.2 Дополнительная литература

- 1. Синявский Ю.В. Сборник задач по курсу теплотехника. ГИОРД, 2010— *Электронная библиотечная система «IPRbook»* http://www.iprbookshop.ru/15931.html
- 2. Маркин В.К., Свинцов В.Я., Губа О.Е. Техническая термодинамика. Тепломассобмен. Астраханский инженерно-строительный институт, ЭБС АСВ, 2009— Электронная библио-течная система «IPRbook. http://www.iprbookshop.ru/17063.html
 - 3. Толстов С.А. Теплотехника: учебное пособие. Воронеж 2010
- 4. Немцев З.Ф., Арсеньев Г.В. Теплоэнергетические установки и теплоснабжение.-М.: Энергоиздат, 1982.
- 5. Расчетные «Eureka» Сайт ВГТА http://cnit.vgta.vrn.ru/ Кафедра промышленной энергетики
 - 6. УМК по дисциплине http://cnit.vgta.vrn.ru/

Периодические издания:

Электронная библиотечная система "Книгафонд" http://www.knigafund.ru:

6.3 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся

- 1. Барбашин А. М Лабораторный практикум по курсам "Физические основы теплотехники", "Техническая термодинамика и теплопередача", "Тепло-хладотехника" [Электронный ресурс] / А. М. Барбашин, С. А. Никель; ВГУИТ, Кафедра физики, теплотехники и теплоэнергетики. Воронеж : ВГУИТ, 2014. 52 с.Ссылка: http://biblos.vsuet.ru/ProtectedView/Book/ViewBook/2753
- 2. Барбашин А. М. Методические указания к выполнению практических работ и СРО по "Тепло- и хладотехнике" для обучающихся по направлениям 19.03.01, 19.03.02, 19.03.03, 19.03.04, 18.03.01, 18.03.02, 20.03.01 [Электронный ресурс] / А. М. Барбашин, С. А. Никель; ВГУИТ, Кафедра физики, теплотехники и теплоэнергетики. Воронеж : ВГУИТ, 2014. 20 с. Ссылка: http://biblos.vsuet.ru/ProtectedView/Book/ViewBook/2761

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Сайт научной библиотеки ВГУИТ http://cnit.vsuet.ru.
- 2. Базовые федеральные образовательные порталы. http://www.edu.ru/db/portal/sites/portal_page.htm.
 - 3. Государственная публичная научно-техническая библиотека. <www.gpntb.ru/>.
- 4. Информационно-коммуникационные технологии в образовании. Система федеральных образовательных порталов. http://www.ict.edu.ru/>.
 - 5. Национальная электронная библиотека. <www.nns.ru/>...
 - 7. Информационная база данных продуктов http://health-diet.ru/base_of_food/;
 - 9. Российская государственная библиотека. <www.rsl.ru/>.
 - 10. Российская национальная библиотека. <www.nlr.ru/>.
 - 11. Информационно-поисковая система ФИПС. http://www1.fips.ru/>
- 12. Европейская патентная поисковая система EPO EuropeanPatentOfficehttp://ep.espacenet.com
- 13. Ведомство патентов и торговых марок США US PatentandTrademarkOffice (USPTO) < http://www.uspto.gov/>
 - 14. Список поисковых систем патентов < http://www.borovic.ru/index_p_ 14_p_2.html>
 - 15. Поисковая система «Google». <https://www.google.ru/>.

- 16. Поисковая система «Рамблер». <www.rambler.ru/>.
- 17. Поисковая система «Yahoo». <www.yahoo.com/>.
- 18. Поисковая система «Яндекс». <www.yandex.ru/>.

6.5 Методические указания для обучающихся по освоению дисциплины

Методические указания для обучающихся по освоению дисциплин (модулей) в ФГБОУ ВО ВГУИТ [Электронный ресурс] : методические указания для обучающихся на всех уровнях высшего образования / М. М. Данылив, Р. Н. Плотникова; ВГУИТ, Учебно-методическое управление. - Воронеж : ВГУИТ, 2014. - Режим доступа : http://biblos.vsuet.ru/MegaPro/Web/SearchResult/MarcFormat/100813. - Загл. с экрана.

Порядок изучения курса:

Объем трудоемкости дисциплины – 3 зачетные единицы (108 ч.) Виды учебной работы и последовательность их выполнения:

- аудиторная: лекции практические занятия посещение в соответствии с учебным расписанием;
- самостоятельная работа: изучение теоретического материалы для сдачи тестовых заданий, подготовка к защите по лабораторным работам и практическим занятиям, выполнение в соответствии с графиком контроля текущей успеваемости;
 - график контроля текущей успеваемости обучающихся рейтинговая оценка;
- состав изученного материала для каждой рубежной точки контроля тестирование, подготовка к защите лабораторной работе и практическому занятию;
- учебно-методическое и информационное обеспечение дисциплины: рекомендуемая литература, методические разработки, перечень ресурсов информационно-телекоммуникационной сети «Интернет»;
- заполнение рейтинговой системы текущего контроля процесса обучения дисциплины — контролируется на сайте <u>www.vsuet.ru</u>;
- допуск к сдаче зачета при выполнении графика контроля текущей успеваемости:
 - прохождение промежуточной аттестации зачет (тестирование, кейс-задания).

6.6 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Используемые виды информационных технологий:

- «электронная»: персональный компьютер и информационно-поисковые (справочно-правовые) системы;
- «компьютерная» технология: персональный компьютер с программными продуктами разного назначения (OC Windows; MSOffice; СПС «Консультант плюс»);
 - «сетевая»: локальная сеть университета и глобальная сеть Internet.

7 Материально-техническое обеспечение дисциплины

Материально-техническая база приведена в лицензионных формах и расположена по адресу https://vsuet.ru.

Для проведения учебных занятий используются:

для проведения у пооных санинии меноявсуютея:	
Ауд. № 311	Лабораторный стенд - "Мир-
Учебная аудитория для проведения занятий лекционного типа, лабо-	эм" (10 шт.)
раторных и практических занятий, занятий семинарского типа, курсо-	
вого проектирования (выполнения курсовых работ), групповых и ин-	
дивидуальных консультаций, текущего контроля и промежуточной	
аттестации (для всех направлений и специальностей)	
Ауд. № 329	Лабораторный стенд - "ЛЭС"
Учебная аудитория для проведения занятий лекционного типа, лабо-	(8 шт.), лабораторный стенд
раторных и практических занятий, занятий семинарского типа, курсо-	"ЭВ" (2 шт.)
вого проектирования (выполнения курсовых работ), групповых и ин-	
дивидуальных консультаций, текущего контроля и промежуточной	
аттестации (для всех направлений и специальностей)	
Ауд. № 333	Лабораторный стенд
Учебная аудитория для проведения занятий лекционного типа, лабо-	"СИПЭМ" (3 шт.), лабора-
раторных и практических занятий, занятий семинарского типа, курсо-	торный стенд "ЭВ" (2 шт.),
вого проектирования (выполнения курсовых работ), групповых и ин-	мультимедийный проектор
дивидуальных консультаций, текущего контроля и промежуточной	BENQ MS500 в комплекте с
аттестации (для всех направлений и специальностей)	экраном, компьютер

Самостоятельная работа обучающихся может осуществляться при использовании:

Зал научной литературы ресурсного центра ВГУИТ: компьютеры Regard - 12 шт. Студенческий читальный зал ресурсного центра ВГУИТ: моноблоки - 16 шт.

8 Оценочные материалы для промежуточной аттестации обучающихся по дисциплине

Оценочные материалы (ОМ) для дисциплины включают в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- -типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы.
- -методические материалы, определяющий процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций.
- ОМ представляются отдельным компонентом и входят в состав рабочей программы дисциплины.

Оценочные материалы формируются в соответствии с П ВГУИТ «Положение об оценочных средствах».

Документ составлен в соответствии с требованиями ФГОС ВО по направлению 16.03.03 Холодильная, криогенная техника и системы жизнеобеспечения

ПРИЛОЖЕНИЕ к рабочей программе

1. Организационно-методические данные дисциплины для заочной формы обучения

1.1 Объемы различных форм учебной работы и виды контроля в соответствии с учебным планом

Общая трудоемкость дисциплины составляет 3 зачетные единицы

	ощая трудоемкость дисциплины составляет з зачетные единицы			
Виды работ	Общая трудоемкость, ч			
	(3 семестр)			
Общая трудоемкость	108			
Аудиторная работа:				
- Всего	15,8			
- лекции	6			
в том числе в форме практической подготовки	6			
- практические занятия	8			
в том числе в форме практической подготовки	8			
- консультации текущие	0,9			
Рецензирование контрольных	0,8			
Зачет	0,1			
Самостоятельная работа:				
- Bcero	88,3			
- контрольные работы	9,2			
- отчеты по практическим работам	10			
- проработка материалов учебников	69,1			
Подготовка к зачету (Контроль)	3,9			

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

по дисциплине

Физические основы теплотехники

В ходе изучения дисциплины **– «Физические основы теплотехники»** бакалавр осваивает следующие компетенции:

ПК-1 способностью выявлять сущность научно-технических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их анализа соответствующий физикоматематический аппарат;

ПК-3 готовностью выполнять расчетно-экспериментальные работы и решать научнотехнические задачи в области холодильной, криогенной техники и систем жизнеобеспечения на основе достижений техники и технологий, классических и технических теорий и методов, теплофизических, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным процессам, машинам и аппаратам.

1. Требования к результатам освоения дисциплины (перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы)

(матрица соответствия планируемых (обобщенных) результатов обучения профессиональным компетенциям)

Nº	Код	Содержание компетенции	офессиональным к В результа	ате изучения учебной дисципли	НЫ
п/п	компетенции	(результат освоения)	обучающийся должен:		
			знать	уметь	владеть
1	2 ПК-1	3 способность выявлять сущность научнотехнических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их анализа соответствующий физикоматематический аппарат	4 рсновные закономерности и способы передачи тепла; законы превращения тепловой энергии в механическую работу; теорию теплообмена, основы массобмена; закономерности использования тепловой энергии в технологических процессах, связанных с работой гидроприводов, компрессорных установок, двигателей внутреннего сгорания и технологического оборудования используемого в транспортных и технологиче-	5 зыявлять сущность научно-технических проблем, возникающих в ходе профессиональной деятельности, и привлекать для их анализа соответствующий физико-математический аппарат	6 навыками энергетического и технологического использования тепла; охраны окружающей среды и энергосбережения;
2	ПК-3	отовность выполнять расчетно- экспериментальные работы и решать научно-технические задачи в области хо- лодильной, криогенной техники и систем жизнеобеспечения на основе достижений техники и технологий, классических и технических теорий и методов, теплофизических, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным процессам, машинам и аппаратам	ских машинах и оборудовании закономерности и принцип работы тепловых процессов лежащих в основе расчета и выбора источника нагрева изделий при различных технологических процессах; тепломассобменые устройства основную терминологию и символику; топливо и основы горения; принципы работы и конструкции различных аппаратов, служащих для целей преобразования энергии топлива в тепловую и тепловой энергии в механическую; теплогенерирующие устройства, холодильную и криогенную технику	выполнять расчетно- экспериментальные работы и решать науч- но-технические задачи в области холодильной, криогенной техники и систем жизнеобеспече- ния на основе достиже- ний техники и техноло- гий, классических и технических теорий и методов, теплофизиче- ских, математических и компьютерных моде- лей, обладающих высо- кой степенью адекват- ности реальным про- цессам, машинам и аппаратам; анализиро- вать тепловые процес- сы в машинах и аппара- тах для разработки оп- тимальных режимов их работы в различных	навыками: экономии тепловой энергии применительно к холодоиспользующему оборудованию, технологических машин; основных экономии энергоресурсов; использовании вторичных энергоресурсов

-				
			технологических систе-	
			мах	

2. Этапы формирования компетенций в процессе освоения дисциплины (описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания)

В ходе формирования компетенций при изучении дисциплины существуют следующие показатели и критерии оценивания:

Nº ⊓/⊓	Показатель	Критерии оценивания	Описание шкалы оценивания
1	Собеседование	Отметка в системе «зачте- но-незачтено»	Зачет, незачет
2	Ситуационная задача к практиче- ской работе	Отметка в системе «зачте- но-незачтено»	Зачет, незачет
	Тест	Процентная шкала	0-100 %
4	Кейс-задача	Уровневая шкала	Уровни обученности

Nº	Контролируемые мо-	Индекс	Оцено	чные средства	Технология оцен-
п/п	дули/разделы/темы дисциплины	кон- троли- руемой компе- тенции (или ее части)	наименование	№№ заданий	ки (способ кон- троля)
			Ситуационная задача для прак- тической работы	43,44	Отметка в системе «зачтено- незачтено»
1.	Техническая термо- динамика	- ПК-1 ПК-3	Собеседование	1-19	Отметка в системе «зачтено- незачтено»
			Тест	48-122	Процентная шкала
			Кейс-задача	247-248	Уровневая шкала
			Ситуационная задача для практической работы	45,46,47	Отметка в системе «зачтено- незачтено»
2.	Основы теплопере- дачи.	ПК-1 ПК-3	Собеседование	20-42	Отметка в системе «зачтено- незачтено»
			Тест	123-246	Процентная шкала
			Кейс-задача	249-252	Уровневая шкала
			Кейс-задача	253	Уровневая шкала

3. Оценочные средства для промежуточной аттестации (зачет) (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы)

3.1 Вопросы к собеседованию (текущие опросы)

Индекс компетен- ции	№ задания	Формулировка задания
ПК-1	1.	Термодинамическая система. Рабочее тело.
ПК-3	2.	Основные термодинамические параметры состояния.

ПК-1	3.	Термодинамический процесс. Уравнение состояния.
ПК-1	4.	Идеальный газ. Уравнение состояния идеального газа.
ПК-1	5.	Реальный газ. Уравнение состояния реального газа.
ПК-1	6.	Внутренняя энергия.
ПК-1	7.	Работа расширения и сжатия. Графическое изображение работы.
ПК-1	8.	Первый закон термодинамики.
ПК-1	9.	Теплоемкость газов. Зависимости между теплоемкостями.
ПК-1	10.	Энтальпия, энтропия. Графическое изображение теплоты.
ПК-1	11.	Второй закон термодинамики. Термический КПД.
ПК-1	12.	Цикл Карно.Обратный цикл Карно.
ПК-1	13.	Термодинамические процессы идеального газа.
ПК-1		Водяной пар. Т-ѕ и р-∨ диаграммы водяного пара.і-ѕ диаграмма водяного па-
T IIX- I	14.	ра. Термодинамические процессы для водяного пара.
ПК-1	15.	Влажный воздух. Влажность воздуха. Влагосодержание.
ПК-1		Дросселирование газов и паров.
ПК-3	16.	дроссетирование газов и паров.
ПК-1,	17.	Термодинамический анализ процессов в компрессоре.
ПК-3	17.	
ПК-1,	18.	Циклы ДВС
ПК-3	10.	
ПК-1,	19.	Циклы паросиловых и газотурбинных установки.
ПК-3	19.	
ПК-1,	20.	Способы передачи теплоты.
ПК-3		
ПК-1	21.	Основной закон теплопроводности.
ПК-1	22.	Коэффициент теплопроводности.
ПК-1	23.	Перенос теплоты через однородную плоскую стенку.
ПК-1	24.	Перенос теплоты через многослойную плоскую стенку.
ПК-1	25.	Перенос теплоты через однородную цилиндрическую стенку.
ПК-1	26.	Основной закон конвективного теплообмена.
ПК-1	27.	Безразмерные критерии теплоотдачи.
ПК-3	28.	Теплоотдача при кипении.
ПК-3	29.	Теплоотдача при конденсации.
ПК-1	30.	Лучистый теплообмен. Основные понятия и определения.
ПК-1	31.	Основные законы лучистого теплообмена.
ПК-3	32.	Защита от теплового излучения.
ПК-1	33.	Сложный теплообмен.
ПК-1	34.	Теплопередача между двумя жидкостями через стенку.
ПК-1	35.	Интенсификация теплопередачи.
ПК-3	36.	Тепловая изоляция.
ПК-1	37.	Теплообменные аппараты
ПК-1	38.	Способы получения низких температур.
ПК-1	39.	Рабочие тела холодильных машин.
ПК-1	40.	Циклы холодильных машин.
ПК-3	41.	Вспомогательные аппараты холодильных машин.
ПК-3	42.	Холодильная обработка продуктов.
0	·-·	I

Критерии и шкалы оценки:

- оценка «зачтено» выставляется студенту, если он активно участвует в собеседовании и обсуждении, подготовил аргументы в пользу решения, предложил альтернативы, выслушивал мнения других;
- оценка «не зачтено», если студент выполнял роль наблюдателя, не внес вклада в собеседование и обсуждение.

3.2 Ситуационные задачи (задания) к практическим работам

O.E Our	iyaqadiiibic sad	a la (Sacaliazi) k lipakilla leokalii paccillalii
Индекс компе- тенции	№ задания	Условие задачи (формулировка задания)
ПК-1, ПК-3	43.	По заданным начальным условиям провести термодинамиче- ское исследование равновесных процессов в идеальных газах: опре- делить работу и количество теплоты в процессе, изменение основных

		термодинамических функций: внутренней энергии, энтальпии и энтроии.
ПК-1, ПК-3	44.	По заданным техническим характеристикам провести сравнительный анализ циклов двигателей внутреннего сгорания, паро- и газотурбинных установок
ПК-1, ПК – 3	45.	По заданным начальным условиям определить коэффициент теплоотдачи и удельный тепловой поток при теплообмене между горячими газами и холодным теплоносителем через разделяющую их стенку
ПК-1, ПК-3	46.	Исходя из заданных параметров технологического процесса определить поверхность нагрева рекуперативного теплообменного аппарата.
ПК-1, ПК-3	47.	Исходя из заданных параметров технологического процесса рассчитать цикл фреоновой и аммиачной холодильных машин

Критерии и шкалы оценки:

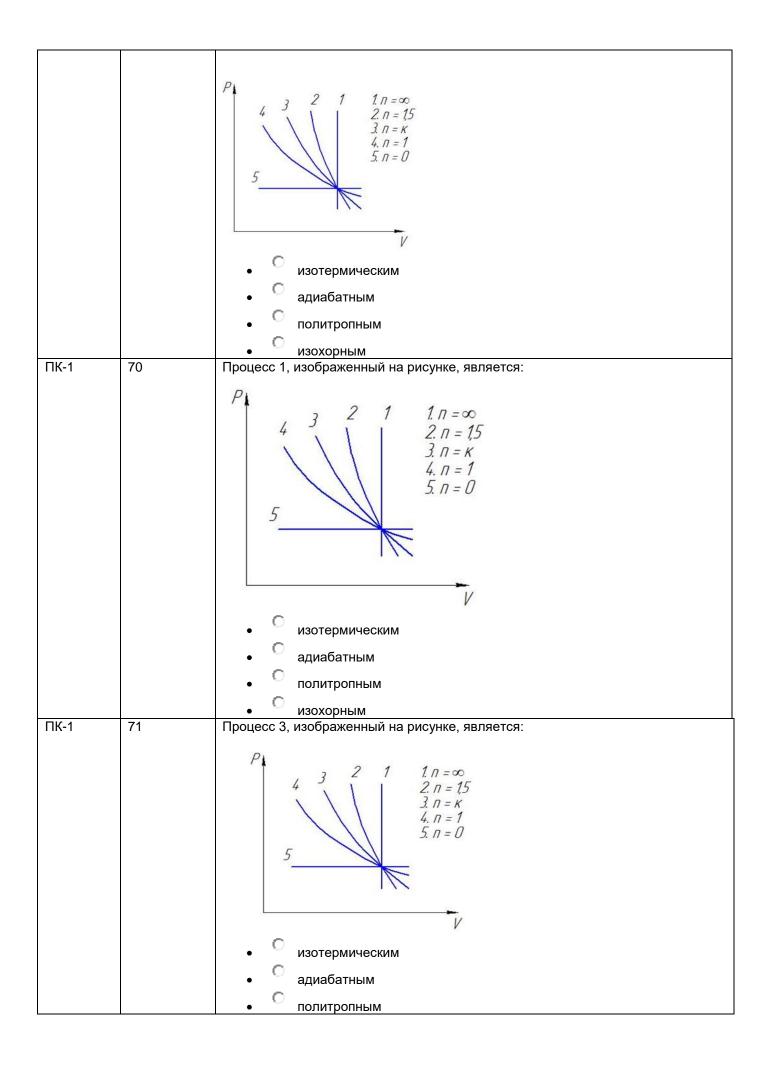
Ситуационная задача оценивается:

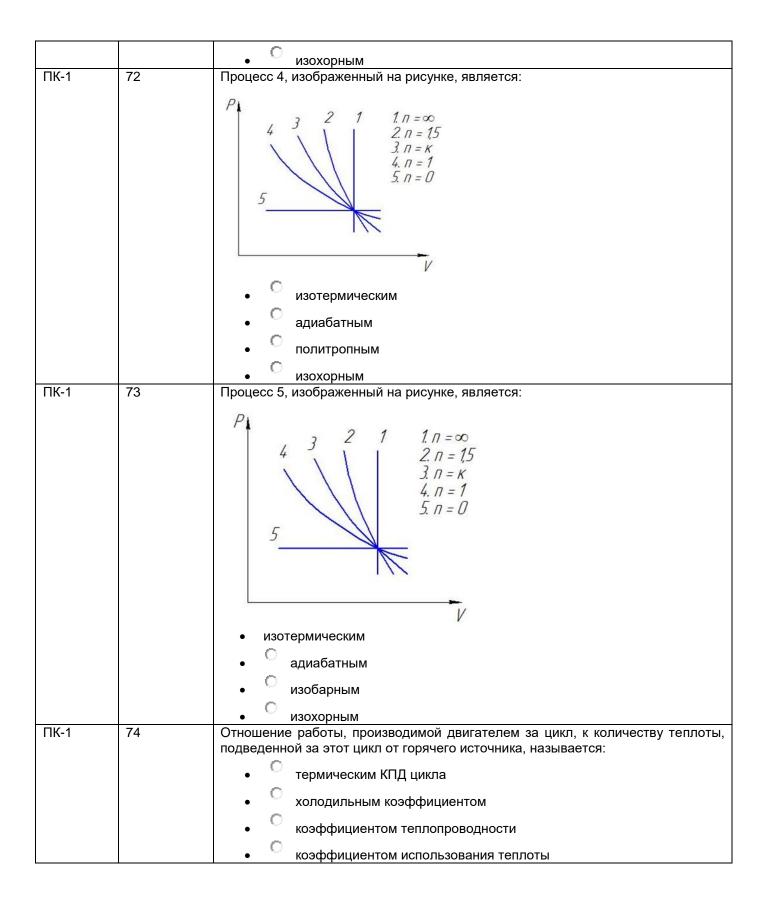
Оценка 5 – студент самостоятельно выполнил все необходимые расчеты, представил отчет с результатами практической работы, ответил на 5 дополнительных вопросов

Оценка 4 — студент выполнил необходимые расчеты самостоятельно, но не все безошибочно, представил отчет с результатами практической работы, содержащий незначительные замечания по тексту и оформлению отчета, ответил на 5 дополнительных вопросов, допустил не более 1 неверного ответа

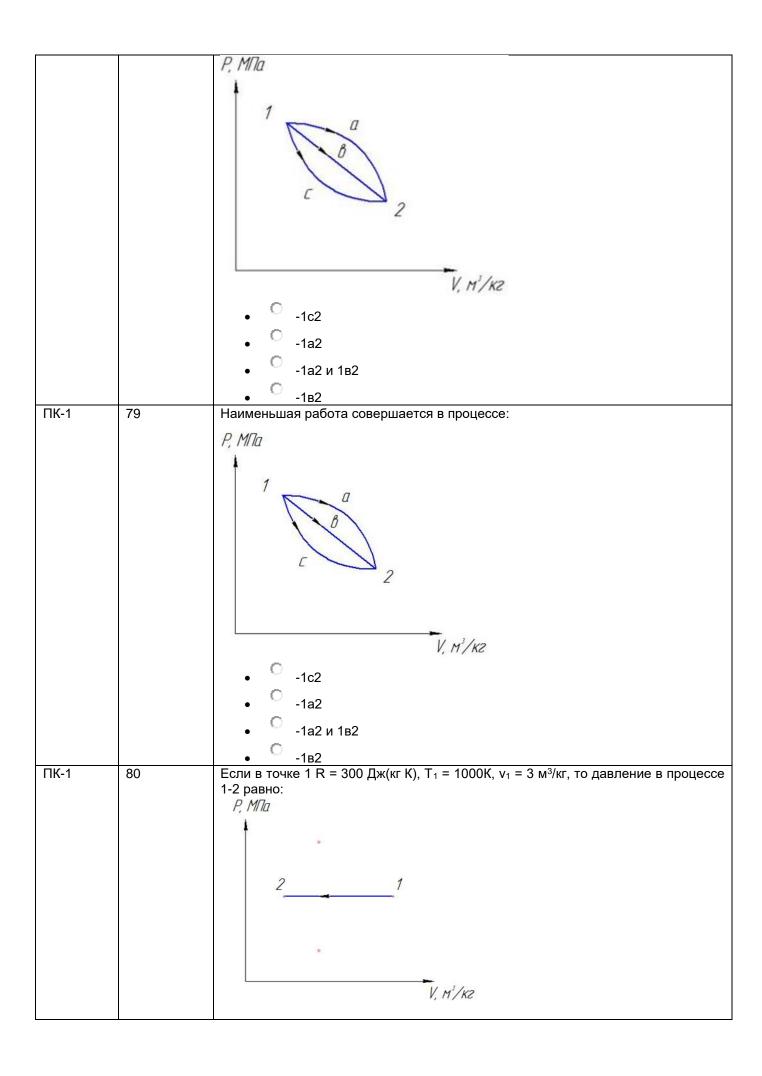
Оценка 3 — студент выполнил не все необходимые расчеты самостоятельно или безошибочно, представил отчет с результатами практической работы, содержащий замечания по тексту и оформлению отчета, ответил на 5 дополнительных вопросов, допустил не более 2 неверных ответов

Оценка 2- студент необходимые расчеты выполнил не самостоятельно или неправильно, представил отчет с результатами практической работы, содержащий значительные замечания по тексту и оформлению отчета, ответил на 5 дополнительных вопросов, допустил не более 3 неверных ответов


- оценка «зачтено» выставляется студенту, если он получил оценки 3, 4, 5;
- оценка «не зачтено», выставляется студенту, если он получил оценку 2.

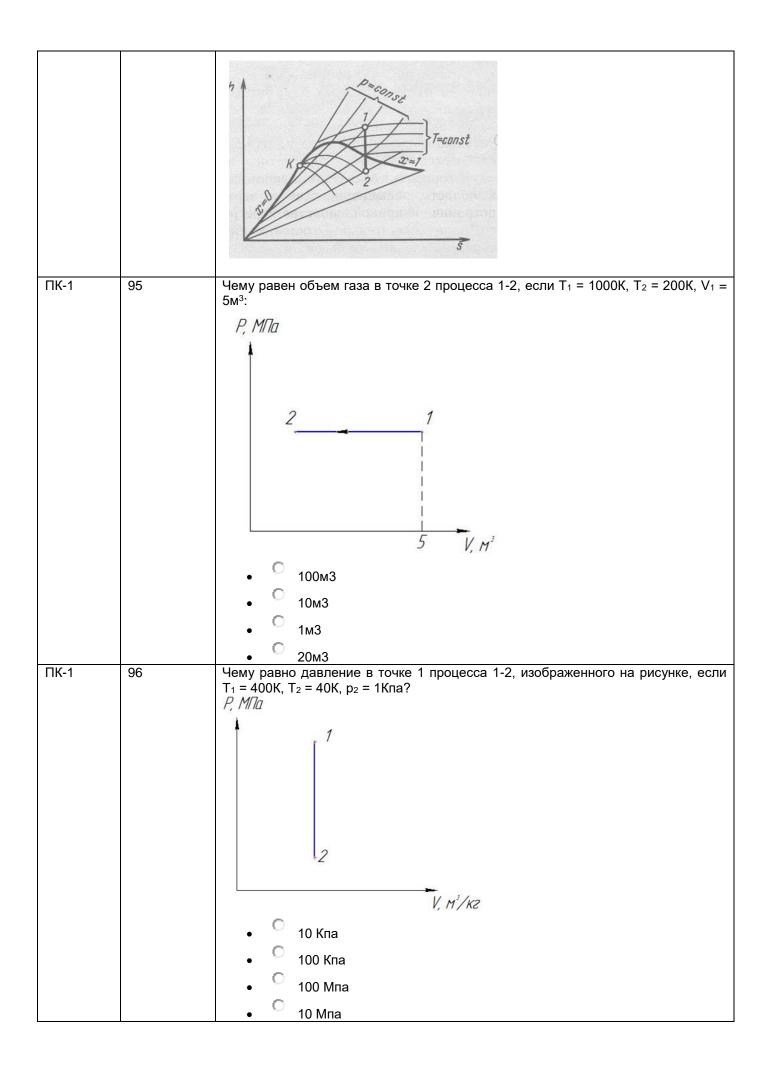

3.3 Тесты (тестовые задания к зачету)

Индекс	Nº	Формулировка вопроса
компе-	задания	
тенции		
		Техническая термодинамика
ПК-1	48	 Термодинамическая система это совокупность материальных тел, находящихся в механическом и тепловом взаимодействии друг с другом и с окружающими систему внешними телами выделенное отдельное макроскопическое тело выделенные макроскопические тела, взаимодействующие между
ПК-1	49	собой Основные термодинамические параметры состояния: •
ПК-3	50	 • i, s, u Абсолютное давление р определяется


		• С р=В+рм
		• р=В-рм
		• р=рм+рвак
ПК-1	51	Уравнение состояния:
		• f(p,v,T)=0
		• f(p,v,T)=1
		• f(p,v,T)=const
ПК-1	52	Уравнение состояния это
		 уравнение, описывающее характер протекания термодинамическо- го процесса
		• функциональная связь между параметрами состояния
		• Уравнение, описывающее состояние рабочего тела
ПК-1	53	Термодинамическим процессом называется
		• изменение состояния термодинамической системы во времени
FIG. 4		• значение параметров состояния в начале и конце процесса
ПК-1	54	Состояние идеального газа описывается уравнением
		• pv=RT
		• pv=const
		• © pV=RT
ПК-1	55	Теплоемкость это:
		• - количество теплоты, которое необходимо подвести к телу, чтобы повысить его температуру на один градус
		• - энергетическая характеристика процесса
		• - способность тела передавать теплоту
ПК-1	56	В зависимости от единицы количества вещества различают следующие удельные теплоемкости:
		• - массовую, объемную и мольную
		• - изобарную и изохорную
		• - истинную и среднюю
ПК-1	57	Уравнение Майера для идеального газа имеет вид:
		• I= U+pV
		• C Q= U+L
		• Cp=Cv+R
ПК-1	58	Показатель адиабаты k зависит от:
		• С - рода газа
		• - температуры газа
		• процесса
ПК-1	59	Уравнение первого закона термодинамики:
		•
		• q= c (T2-T1)
		• C q=Tds
		- 4-140

ПК-1	60	Внутренняя энергия это:
		• - кинетическая энергия тела
		• - потенциальная энергия тела
ПК-1	61	• - сумма кинетической и потенциальной энергии тела Графически работу можно определить по:
		• С - р-v диаграмме
		• - Т-ѕ диаграмме
ПК-1	62	• - i-s диаграмме Энтальпия это:
I IN-I	02	6
		• H=U+pV
		• H=H2-H1
		• ^C Q= U+L
ПК-1	63	Уравнение изохорного процесса имеет вид:
		• P2/P1 =T2/T1
		• V2/V1 =T2/T1
		• P2/P1 =V1/V2
ПК-1	64	Уравнение изобарного процесса имеет вид:
		• P2/P1 =T2/T1
		• V2/V1 =T2/T1
		• P2/P1 =V1/V2
ПК-1	65	Уравнение изотермического процесса имеет вид:
		• P2/P1 =T2/T1
		• V2/V1 =T2/T1
ПК-1	66	• P2/P1 =V1/V2 Уравнение адиабатного процесса имеет вид:
1110		0
		• pv=const
		• pv ⁿ =const
		• pv ^k =const
ПК-1	67	Уравнение политропы имеет вид:
		pv=const
		• pv ⁿ =const
		• pv ^k =const
ПК-1	68	Показатель политропы может иметь значения:
		• от минус до плюс бесконечности
		• только три значения, в зависимости от рода газа
		• больше нуля
ПК-1	69	Процесс 2, изображенный на рисунке, является:

ПК-1	75	Работа расширения в процессе 1-2 (изображенный на рисунке) равна:
		Р, МПа
		0.4 1
		0,12
		S, r = Z
		V, M³/KZ
		• 0,4 КДж
		• 0 кдж
		• 0,3 МДж
ПК-1	76	0,3 КДж Изображенный на рисунке трубопровод с горячей водой является:
TIK-1	10	изоораженный на рисунке труоопровод сторичей водой ивлистои.
		↓ <i>Q=U</i>
		ω $\overline{}$ ω
		
		y <i>q=0</i>
		• -адиабатной термодинамической системой
		• -открытой и адиабатной термодинамической системой
		• -открытой термодинамической системой
ПК-1	77	• -изолированной термодинамической системой
I IN-I	' '	Неравновесность приводит всегда:
		• -к увеличению работы рабочего тела
		• -к уменьшению энтропии
		• -к потере части работы
Elic 4	70	• -к увеличению энтальпии
ПК-1	78	Наибольшая работа совершается в процессе:



		• -1 Мпа
		• ^С -0,1 Мпа
		• -1000 Кпа
		• ^ℂ -10000 Πa
ПК-1	81	Насыщенным называется пар, находящийся :
		-в термическом и динамическом равновесии с жидкостью, из которой он образуется
		• -в динамическом равновесии с жидкостью, из которой он образуется
		• -в термическом равновесии с жидкостью, из которой он образуется
		• -в статическом равновесии с жидкостью, из которой он образуется
ПК-1	82	Изобарным является процесс:
		- 0 1 - 0 2 - 0 3
TIC 4	00	• 4
ПК-1	83	Изохорным является процесс:
		T 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		· 0 1
		. 0 2
		• 0 3
		. 0 4
ПК-1	84	Изотермическим является процесс:

		1
ПК-1	85	• 4 Адиабатным является процесс:
		1
ПК-1	86	Насыщенный пар, в котором отсутствуют взвешенные частицы жидкой фазы, называют: -сухим насыщенным паром -влажным паром -перегретым паром -влажным перегретым паром
ПК-1	87	Пар, температура которого превышает температуру насыщенного пара того же давления, называют:

ПК-1	88	Двухфазная смесь, представляющая собой пар со взвешенными в нем капель- ками жидкости, называется:
		• сухим насыщенным паром
		• -влажным насыщенным паром
		• -перегретым паром
		0
ПК-1	89	-влажным перегретым паром Степенью сухости пара называется:
		• -массовая доля сухого насыщенного пара во влажном паре
		• -массовая доля перегретого пара во влажном паре
		• -массовая доля влажного насыщенного пара в сухом паре
		• -массовая доля сухого насыщенного пара в перегретом паре
ПК-1	90	Количество теплоты в процессе 1-2 равно 500 Дж/кг. Чему равна энтропия в
		точке 2? <i>Т. К</i>
		1 2
		200
		5 S, D*/KZ K)
		• 7,5 Дж/(кг К)
		• 20 Дж/(кг К)
		• 0 Дж/(кг К)
ПК-1	91	• 6 Дж/(кг К) Процесс 1-2 изображенный на рисунке, это:
T IIX-1	91	Процесс 1-2 изоораженный на рисунке, это.
		h \ P=const
		//2/
		T=const
		K $x=1$
		\$ 1
		5
		O wasyanii iš massa na
		• - изохорный процесс водяного пара
		• - изобарный процесс водяного пара
		• - изотермический процесс водяного пара
		• - адиабатный процесс водяного пара

ПК-1	92	Процесс 1-2 изображенный на рисунке, это:
		T=const
		• - изохорный процесс водяного пара
		• - изобарный процесс водяного пара
		• - изотермический процесс водяного пара
		• - адиабатный процесс водяного пара
ПК-1	93	Процесс 1-2 изображенный на рисунке, это:
		T=const
		• - изохорный процесс водяного пара
		• с изобарный процесс водяного пара
		• - изотермический процесс водяного пара
ПК-1	94	• - адиабатный процесс водяного пара Процесс 1-2 изображенный на рисунке, это:
		• - изохорный процесс водяного пара
		• - изобарный процесс водяного пара
		• - изотермический процесс водяного пара
		• - адиабатный процесс водяного пара
1	1	

ПК-1	97	Площадь под линией процесса 1-с-2 является: Р, МПа 1
		2
		V, M³/K2
		• - работой расширения
		• - изменением внутренней энергии
		• - количеством теплоты
ПК-3	98	• -работой сжатия Соплом называют устройство, предназначенное для преобразования внутрен-
TIK		ней энергии сжатого газа:
		• В кинетическую энергию струи
		• в потенциальную энергию струи
		• в кинетическую и потенциальную энергию струи
ПК-3	99	В соплах происходит расширение газа:
		• с уменьшением давления (dp<0) и увеличением скорости
		• с уменьшением давления (dp<0) и уменьшением скорости.
		• с увеличением давления (dp>0) и увеличением скорости.
ПК-1	100	• с увеличением давления (dp>0) и уменьшением скорости. Располагая фазовой <i>pT</i> - диаграммой , по линии AC, можно определить давле-
		ния или температуры:
		P
		AND ARTHUR
		P _k
		жидков
		P/NA
		Pa Tablogeration
		C
		0 \mathbf{T}_{A} \mathbf{T}_{k} \mathbf{T}
		• при сублимации и десублимации
		• при плавлении и затвердевании
		• при кипении и конденсации

ПК-1	101	Располагая фазовой <i>pT</i> - диаграммой,по линии AB можно определить давления или температуры:
		P
		PA C TAROCE PATRICE
		\mathbf{T}_{A} \mathbf{T}_{k} \mathbf{T}
		 при сублимации и десублимации при плавлении и затвердевании
		0
ПК-1	102	• при кипении и конденсации Располагая фазовой <i>рТ</i> - диаграммой, по линии АК можно определить давления или температуры:
		P _k B KHДКОЕ TAHOOUBUTROE TA Tk T
		 при сублимации и десублимации при плавлении и затвердевании
ПК-1	103	при кипении и конденсации На фазовой р-v диаграмме, область обозначенная цифрой 1,соответствует: Р

		твёрдому состоянию жидкому состоянию газообразному состоянию надкритическому состоянию
ПК-1	104	На фазовой р-v диаграмме, область обозначенная цифрой 3,соответствует: Р твёрдому состоянию жидкому состоянию газообразному состоянию
ПК-1	105	• надкритическому состоянию На фазовой р-v диаграмме, область обозначенная цифрой 5,соответствует: Р твёрдому состоянию жидкому состоянию газообразному состоянию надкритическому состоянию надкритическому состоянию
ПК-1	106	На фазовой р-v диаграмме, область обозначенная цифрой 7,соответствует: • твёрдому состоянию • жидкому состоянию • газообразному состоянию • надкритическому состоянию

ПК-1	107	На фазовой р-v диаграмме, область обозначенная цифрой 2,соответствует следующему состоянию вещества: Р твёрдое + жидкое жидкое + газообразное надкритическому состоянию
ПК-1	108	На фазовой р-v диаграмме, область обозначенная цифрой 4,соответствует следующему состоянию вещества: Р твёрдое + жидкое жидкое + газообразное надкритическому состоянию

ПК-1	109	На фазовой p-v диаграмме, область обозначенная цифрой 6,соответствует следующему состоянию вещества:
		• твёрдое + жидкое
		• жидкое + газообразное
		• твёрдое + газообразное
		• надкритическому состоянию
ПК-1	110	Эти выражения справедливы для:
		$c_n = c_v$, $n = \pm \infty$;
		• изохорного процесса
		• изобарного процесса
		• изотермического процесса
		• адиабатного процесса
ПК-1	111	Эти выражения справедливы для:
		$c_n = c_p$, $n = 0$
		• изохорного процесса
		• изобарного процесса
		• изотермического процесса
ПК-1	112	адиабатного процесса Эти выражения справедливы для:
		$c_n = \infty$, $n = \lim_{c_n \to \infty} \frac{c_n - c_p}{c_n - c_p} = 1$
		• изохорного процесса
		• изобарного процесса
		• изотермического процесса
		• адиабатного процесса
ПК-1	113	Эти выражения справедливы для:
		$C_n = 0$, $n = k$.
		• изохорного процесса
		• изобарного процесса
1	1	1 1 7

		• изотермического процесса
ПК-1	114	адиабатного процесса Это выражение справедливо для:
TIIC	114	$q = c_p (T_2 - T_1);$
		• изохорного процесса
		• изобарного процесса
		• изотермического процесса
		• адиабатного процесса
ПК-1	115	Это выражение справедливо для:
		$q = c_v(T_2 - T_1).$
		• изохорного процесса
		• изобарного процесса
		0
		• изотермического процесса
ПК-1	116	адиабатного процесса Это выражение справедливо для:
1 IIX- I	110	
		$q = l = \int_{0}^{\nu_{1}} p d\nu = \int_{0}^{\nu_{2}} \frac{R \cdot T}{\nu} d\nu = R \cdot T \cdot \ln(\nu_{2} / \nu_{1});$
		v_1 v_1 v_2
		• изохорного процесса
		• изобарного процесса
		• изотермического процесса
ПК-1	117	адиабатного процесса Это выражение справедливо для:
		$l = p(\upsilon_2 - \upsilon_1);$
		• изохорного процесса
		• изобарного процесса
		• изотермического процесса
F16.4	110	• адиабатного процесса
ПК-1	118	Эти выражения справедливы для:
		$u_2 - u_1 = 0; i_2 - i_1 = 0.$
		• изохорного процесса
		• изобарного процесса
		• изотермического процесса
		• адиабатного процесса
ПК-1	119	Это выражение справедливо для:
		$i_2 - i_1 = u_2 - u_1 + p(v_2 - v_1) = c_p(T_2 - T_1) = q;$
		• изохорного процесса
		• изобарного процесса
		• изотермического процесса

	• адиабатного процесса
120	Это выражение справедливо для:
	$u_2 - u_1 = -l = \frac{R}{k-1} (T_2 - T_1);$
	• изохорного процесса
	• изобарного процесса
	• изотермического процесса
	• адиабатного процесса
121	Это выражение справедливо для:
	$i_2 - i_1 = (\frac{R}{k-1} + R)(T_2 - T_1) = \frac{kR}{k-1}(T_2 - T_1);$
	• изохорного процесса
	• изобарного процесса
	• изотермического процесса
	• адиабатного процесса
122	Это выражение справедливо для:
	$I = \frac{R}{n-1} (T_1 - T_2) = (c_v - c_n) (T_1 - T_2)$
	• изохорного процесса
	• изобарного процесса
	• изотермического процесса
	• политропного процесса
100	Основы теплопередачи
123	Теплота может распространяться:
	• только в веществах
	• - в любых веществах и даже через вакуум
124	• - только через вакуум Существуют способы передачи теплоты
124	
	• теплопроводность, конвенция и излучение
	• теплоотдача и излучение
405	• теплопередача и конвенция
125	Теплопроводность это
	• перенос теплоты в веществах микрочастицами
	• перенос теплоты микрообъёмами
100	• перенос теплоты электромагнитными волнами
126	Конвенция это • перенос теплоты при помощи микрочастиц
	перенос теплоты вместе с макроскопическими объёмами вещества
	• перенос теплоты при помощи волн
127	Излучение это
	121 122 123 124 125

		• перенос теплоты при помощи электромагнитных волн
		• перенос теплоты микрочастицами
		• перенос теплоты макрообъёмами
ПК-3	128	Температурное поле это
		• совокупность значений температур во всех точках тела в данный момент времени
		• совокупность значений температуры во всех точках тела
		 совокупность значений температуры в данной точке тело в данный момент времени
ПК-1	129	Изотермическая поверхность это
		• поверхность, на которой температура одинакова
		• геометрическое место точек, температура в которых одинакова
		• геометрическое место точек, температура в которых имеет своё
		значение
ПК-1	130	Формулировка закона Фурье
		• вектор плотности теплового потока, передаваемого теплопроводностью пропорционален градиенту температуры
		• вектор плотности теплового потока, передаваемого теплопроводностью равен градиенту температуры
		 вектор плотности теплового потока, передаваемого теплопроводно- стью обратно пропорционален градиенту температуры
ПК-1	131	Коэффициент теплопроводности
		• характеризует способность данного вещества проводить теплоту
		 характеризует способность данного вещества пропускать через себя тепловое излучение
		0
ПК-1	132	• характеризует состояние поверхности вещества Коэффициент теплопроводности зависит
T IIX-1	132	• только от материала
		• Только от материала
		• от материала, температуры, давления, пористости, влажности, состояния поверхности
		• от температуры
ПК3	133	На рисунке изображен
		$t_{N} = \frac{1}{1 + \frac{1}{2}} = \frac{1}{1 + \frac{1}} = \frac{1}{1 + \frac{1}} = \frac{1}{1 + \frac{1}} = \frac{1}{1 + \frac{1}} = \frac{1}{1 +$
		Ψ <i>t</i> _κ
		• прямоточный теплообменник
		• противоточный теплообменник
		0
ПК-1	134	• перекрестный теплообменник Математически температурное поле в общем виде описывается уравнением
		C = f(x, y, z, y)
		· - · (^, y, ∠, /

ПК-1	135	Основной закон теплопроводности
		• q=-λ·grad(t)
		• q = u + l
		6
ПК-1	136	• q = TdS Градиент температуры для плоской стенки
		• grad (t) =dt/dx
		• grad t =q/λ
ПК-1	137	• grad t =dt/λ Плотность теплового потока через плоскую стенку:
		• q = (tc1 - tc2)·λ/δ
		• q = (tc1 - tc2)·λ/R
ПК-1	138	• q=-λgrad t Тепловая проводимость
		• (λ·F)/δ
		• δ/(λ·F)
ПК-1	139	• TdS Термическое сопротивление стенки
		 δ/(λ·F)
		• (λ·F)/δ
ПК-1	140	• TdS Термическое сопротивление цилиндрической стенки:
' '	110	• (1/(2π·λ·l))ln(d2/d1)
		6
		• δ/λ·F
ПК-1	141	 (λ·F)/δ Уравнение для расчёта теплового потока через цилиндрическую стенку:
		• Q=(tc1 - tc2)/((1/(2π·λ·l)ln(d2/d1))
		• Q=(tc1 - tc2)/R
ПК-1	142	 q=(tc1 - tc2)/δ Формула расчета теплового потока через плоскую стенк:
11111-1	142	
		• Q= λ·F·(tc1-tc2)/δ
		• Q = U + L
ПИ	142	• Q= α·F·(tc1-tc2)
ПК-1	143	Градиент температуры для цилиндрической стенки:
		grad t =dt/dx
		grad t =dt/dr
		• grad t =-(q/x)
ПК-1	144	Процесс теплообмена между поверхностью твёрдого тела и жидкостью называют
L	1	1 =

		• теплопроводностью
		• излучением
		• термическим сопротивлением
		• теплооотдачей
ПК-1	145	Теплоотдача это
		• процесс теплообмена между поверхностью твёрдого тела и жидко-
		стью
		• процесс теплообмена между поверхностями твёрдого тела
		• процесс теплообмена внутри жидкости
ПК-3	146	Уравнение Ньютона-Рихмана для теплоотдачи имеет вид:
		• Q=α·F· tc - tж
		• Q = U + L
F16.4	1.17	• q=-λgrad t
ПК-1	147	Коэффициент теплоотдачи
		• характеризует интенсивность процесса теплоотдачи
		• характеризует способность тела проводить тепло
		• характеризует свойства тела
ПК-1	148	Коэффициент теплоотдачи зависит
	140	
		• от физических свойств жидкости (газа) и характере её движения
		• от температуры
		• От рода рабочего тела
ПК-1	149	Различают конвекцию
		• естественную и вынужденную
		• естественную и свободную
		0
ПК-3	150	ограниченную и объёмную Естественная конвекция возникает…
I III O	130	Corectberrian Konbektun Bestrikaer
		• за счет теплового расширения жидкости, нагретой около теплоот-
		дающей поверхности
		• за счет внешнего источника воздействия на рабочее тело (вентиля-
		тора, насоса)
		• из-за перепада давления жидкости около теплоотдающей поверх-
EII O	1	ности
ПК-3	151	Вынужденная конвекция
		• возникает в результате внешнего воздействия, причем в результате
		это воздействия создаётся перепад давления, являющийся движущей силой
		0
		• возникает в результате разности температур
ПКО	450	• возникает самопроизвольно
ПК-3	152	Критерий Нуссельта
		• представляет собой безразмерный коэффициент теплоотдачи
		• является табличной величиной для данного рабочего тела
		·

		0
ПК-1	153	• характеризует скорость движения жидкости Критерий Рейнольда…
	100	
		• выражает отношение сил инерции к силам вязкого трения
		• является теплофизической константой
		• выражает отношение подъёмной силы к скоростному напору
ПК-1	154	Критерий Прандтля…
		 характеризует теплофизические свойства вещества и является теплофизической константой
		• Является безразмерным коэффициентом теплоотдачи
		• характеризует режим движения жидкости
ПК-1	155	Критерий Грасгофа
		 характеризует отношение подъёмной силы, возникающей вслед- ствие теплового расширения жидкости, к силам вязкости
		• характеризует отношение скоростного напора к силам вязкости
		• является безразмерным коэффициентом теплоотдачи
ПК-3	156	Различают режимы движения жидкости
		• Паминарный и турбулентный
		• Стественный и вынужденный
		• переходный и установившийся
ПК-1	157	Критерий Нуссельта
		• Nu=(α·I)/λ
		• Nu=(ω·I)/v
		• Nu=(c·ρ·ν)/λ
ПК-1	158	Критерий Рейнольдса
		• Re=(α·I)/λ
		• Re=(ω·I)/v
		• Re=(c·ρ·ν)/λ
ПК-1	159	Критерий Прандтля
		• Pr=(α·I)/λ
		• Pr=(ω·I)/v
		• Pr=(c·ρ·ν)/λ
ПК-1	160	Критерий, определяемый уравнением
		$a = a^{\prime}$
		$Gr = g\beta(t_c - t_{\infty}) \frac{I^3}{v^2}$
		• является критерием Нусельта
		• Является критерием Рейнольдса
		• является критерием Прандтля
		• является критерием Грасгофа
ПК-3	161	Различают режимы кипения жидкости
		• пузырьковый и плёночный

		• С капельный и плёночный
		0
ПК-3	162	• пузырьковый и капельный Различают конденсацию
		• пузырьковую и плёночную
		• капельную и плёночную
		• пузырьковую и капельную
ПК-	163	Пар конденсируется на поверхности…
		• температура, которой ниже температуры насыщения
		• температура, которой выше температуры насыщения
		• температура, которой равна температуры насыщения
ПК-1	164	Процесс превращения внутренней энергии тел в энергию электромагнитных колебаний называется
		• теплопроводностью
		• конвекцией
		• тепловым излучением
ПК1	165	Тепловое излучение, как процесс распространения энергии вещества характеризуется
		• длиной волн и частотой колебания
		• температурой тела
ПК-3	166	• природой тела
TIK-3	100	Основное количество тепловой энергии излучается при длине волны
		• λ=0,8-80мкм
		• λ=0,4-0,8мкм
		• λ=90мкм
ПК-3	167	Сумма потоков собственного и отраженного телом излучения называется его:
		• эффективным излучением
		• селективным излучением
		•
ПК-1	168	Это закон:
		2,898
		$\lambda_m = \frac{1}{(T \cdot 10^3)}$
		• Вина
		• Киргофа
		• Стефана-вольцмана
ПК-1	169	• Планка
1 113-1	109	Это закон:
		$E_0 = \sigma_0 T^4$
		. О Вина
		• Вина

• Стефана-Больцмана • Планка ПК-1 Это закон: $\varepsilon = A$ • Вина • Киргофа • Стефана-Больцмана • Планка ПК-1 Этим уравнением определяется: $\varepsilon = \frac{E}{E_0}$ • Степень черноты тела • Коэффициент поглощения
\square К-1 170 Это закон: $\varepsilon = A$ • Вина • Скиргофа • Стефана-Больцмана • \square Планка \square Тим уравнением определяется: $\varepsilon = \frac{E}{E_0}$ • Степень черноты тела • Коэффициент поглощения
$\varepsilon = A$ • Вина • Киргофа • Стефана-Больцмана • Планка ПК-1 171 Этим уравнением определяется: $\varepsilon = \frac{E}{E_0}$ • Степень черноты тела • коэффициент поглощения
$egin{array}{cccccccccccccccccccccccccccccccccccc$
• Сиргофа • Стефана-Больцмана • Планка ПК-1 Этим уравнением определяется: $\varepsilon = \frac{E}{E_0}$ • Степень черноты тела • Коэффициент поглощения
• Планка ПК-1 Этим уравнением определяется: • $= \frac{E}{E_0}$ • Степень черноты тела • коэффициент поглощения
ПК-1 171 Этим уравнением определяется: $\varepsilon \; = \; \frac{E}{E_{\;0}}$ • степень черноты тела • коэффициент поглощения
$arepsilon = rac{E}{E_0}$ • Степень черноты тела • коэффициент поглощения
• коэффициент поглощения
• коэффициент поглощения
• коэффициент поглощения
• коэффициент отражения
Ф коэффициент пропускания ПК-1 172 Этим уравнением определяется:
1
$\varepsilon_{np} = \frac{1}{1/\varepsilon_1 + 1/\varepsilon_2 - 1}$
• приведенная степень черноты системы тел
• коэффициент поглощения
• коэффициент отражения
• коэффициент пропускания
ПК-3 Для защиты от теплового излучения применяют экраны, которые • отражают энергию излучения
• поглощают энергию излучения
• пропускают энергию излучения
ПК-1 174 Тело, поглощающее все падающее на него излучение, называется:
• абсолютно черным
• абсолютно белым
• абсолютно прозрачным
• Серым
ПК-1 175 Тело, отражающее все падающее на него излучение, называется:
• абсолютно черным

		• абсолютно белым
		• абсолютно прозрачным
		• серым
ПК-1	176	Тело, пропускающее сквозь себя все падающее на него излучение, называется:
		• абсолютно черным
		• абсолютно белым
		• С абсолютно прозрачным
		• серым
ПК-1	177	Тела, для которых коэффициент поглощения A<1 и не зависит от длины падающего излучения, называются:
		• абсолютно черными
		• абсолютно белыми
		• абсолютно прозрачными
		• С серыми
ПК-1	178	Это закон:
		$F = C \left(\frac{T}{T}\right)^4$
		$L=C(\overline{100})$
		ВинаКиргофа
		• Стефана-Больцмана для реального тела
ПК-1	179	• Планка
I IN-I	179	Поверхностная плотность потока интегрального излучения абсолютно чёрного тела в зависимости от его температуры описывается законом
		• Стефана-Больцмана
		• Вина • Киргофа
		• Планка
ПК-1	180	Эта формула определяет:
		$C=\epsilon \cdot C_0$
		• коэффициент излучения реального тела
		• коэффициент поглощения реального тела
		коэффициент пропускания реального телакоэффициент отражения реального тела
ПК-3	181	Если теплота от одного теплоносителя к другому передается через разделяю-
		щую их стенку, то теплообменник называется: • тепловой трубой
		• регенеративный
		• смесительный
ПК-3	182	• рекуперативный
1111-3	102	Если передача тепла от горячего носителя к холодному осуществляется за счет смешения обоих теплоносителей, то такой теплообменник называется:
		• тепловой трубой
		• регенеративный

		• смесительный
		• рекуперативный
ПК-1	183	Для интенсификации теплопередачи надо:
		• либо увеличить перепад температур между теплоносителями, либо
		уменьшить термическое сопротивление теплопередачи
		• уменьшить термическое сопротивление стенки
		• увеличить скорость течения одного из теплоносителя
ПК1	184	Распределение температуры по радиусу цилиндрической стенки:
		• подчиняется логарифмическому закону
		• зависимость температуры от координаты линейна
		• не зависит от формы стенки
ПК-3	185	Теплоизоляторы это материалы
		• имеющие низкий коэффициент теплопроводности
		• имеющие высокий коэффициент теплопроводности
		• отражающие тепловое излучение
ПК-1	186	По этой формуле рассчитывается:
		1
		$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}}$
		$\frac{1}{\alpha} + \frac{0}{2} + \frac{1}{\alpha}$
		• коэффицент теплопередачи
		• коэффицент теплоотдачи
	407	• коэффицент теплопроводности
ПК-1	187	По этой формуле рассчитывается:
		1
		$R_{\alpha} = \frac{1}{\alpha F}$
		αF
		• термическое сопротивление теплоотдачи
		• термическое сопротивление теплопроводности
		• термическое сопротивление теплопередачи
ПК-1	188	По этой формуле рассчитывается:
		$R_k = R_{\alpha 1} + R_{\lambda} + R_{\alpha 2}$
		~ x ~ a1 ~ x ~ a2
		• термическое сопротивление теплоотдачи
		• термическое сопротивление теплопроводности
		• термическое сопротивление теплопередачи
ПК-1	189	В уравнении теплового баланса теплообменника параметр, обозначенный η,
		соответствует:
		$\eta \cdot m_1 \cdot (c_{p1}' \cdot t_1' - c_{p1}'' \cdot t_1'') = m_2 \cdot (c_{p2}'' \cdot t_2'' - c_{p2}' \cdot t_2')$
		• абсолютному КПД
		• внутреннему относительному КПД
		• КПД теплообменника
	400	• термическому КПД
ПК-1	190	Если m1 = 10 кг/с, $c_{p1}{}^{/}=c_{p1}{}^{/\prime}=4,2$ кДж/(кг•К), $t_1{}^{/\prime}=70$ °C, $t_1{}^{\prime}=80$ °C, то тепловой по-
		ток, отдаваемый горячим теплоносителем, будет равен:
		• Q = 420 kBT
		• q = 420 кДж/кг
		• Q = 420 кДж
П(4	404	• Q = 420 BT
ПК-1	191	λ1 = 50 Bт/(м•K), λ2 = 30 Bт/(м•K). Плотность теплового потока равна:

		. 160 kBt/m2 • 160 Bt/m2 • 160000 kBt/m2 • 160000 kBt/m2 • 160000 kBt/m2
ПК-1	192	Считая, что E1 = E2, интегральный коэффициент излучения (степень черноты) второго тела ε 2, равен: $T_1 = 1000 \ K$ $\varepsilon_1 = 0.81$ $T_2 = 300 \ K$ • 0,1 • 0,01 • 0,05 • 0,5
ПК-1	193	Коэффициенты отражения и пропускания равны соответственно R = 0,001 и D = 0,005. Тело обладает свойствами близкими к • абсолютно черному • абсолютно прозрачному и абсолютно белому • абсолютно белому • абсолютно прозрачному
ПК-1	194	О ₂ и N ₂ • обладают значительной излучательной и поглощательной способностью • обладают значительной излучательной способностью • обладают значительной поглощательной способностью • прозрачны для теплового излучения
ПК-1	195	Поверхностная плотность потока интегрального излучения абсолютно черного тела $E_0 = 5,67 \cdot 10^5$. Степень черноты серого тела $\epsilon = 0,1$. Поверхностная плотность потока интегрального излучения серого тела равна: • $5,77 \cdot 100000$ • $5,67$ • $5,67 \cdot 1000000$ • $5,67 \cdot 1000000$
ПК-1	196	При расчете теплоотдачи внутри трубы за определяющий размер принимается:
ПК-1	197	Коэффициент теплопроводности твердого тела для рассматриваемого случая:

		t,°C t ₁
		$ \begin{array}{ccc} & & & \downarrow \\ & & & \downarrow \\ & & & & \downarrow \\ & & & & & \downarrow \\ & & & & & & \downarrow \\ & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & \downarrow \\ & & & & & & & & \downarrow \\ & & & & & & & & \downarrow \\ & & & & & & & & \downarrow \\ & & & & & & & & \downarrow \\ & & & & & & & & \downarrow \\ & & & & & & & & \downarrow \\ & & & & & & & & \downarrow \\ & & & & & & & & \downarrow \\ & & & & & & & & \downarrow \\ & & & & & & & & \\ & & & & & & & & \downarrow \\ & & & & & & & & & \downarrow \\ & & & & & & & & & & \\ & & & & & & &$
ПК-1	198	 λ = const Nuж = 10, α = 60 Bτ/(м² • K), d = 0,1м. Определяющая температура равна: t, °C λ, Bτ/(м•K) 0 0,55 20 0,6 40 0,63 60 0,66
ПК-3	199	 0 40 20 60 Для углеродистых сталей коэффициент теплопроводности λ [Вт/(м•К)] примерно
TIK-3	199	равен: • 400 • 50 • 0,6 • 0,025
ПК-1	200	По этой формуле определяется термическое сопротивление: $R = \sum_{i=1}^{3} \frac{\delta_{i}}{\lambda_{i}}$ • трехслойной однородной плоской стенки • трехслойной однородной цилиндрической стенки • двухслойной однородной плоской стенки • двухслойной однородной цилиндрической стенки
ПК-3	201	Наибольшим коэффициентом теплопроводности обладают • чистые металлы • чистые газы • чистые жидкости
ПК-3	202	Не излучает и не поглощает лучистую энергию:
ПК-1	203	Направление вектора градиента температуры обозначено цифрой:

ΠK-1	204	то по
ПК-1	205	Коэффициент теплоотдачи α = 100 Bт/(м2 •K), температура стенки tc = 80°C, температура жидкости tж = 70°C. Плотность теплового потока равна: • 1000 Bт/(м2 •K) • 10000 Bт/м2 • 10000 Bт/(м2 •K)
ПК-1	206	Тело называют абсолютно белым, если:
ПК-1	207	Это уравнение называется дифференциальным уравнением для нестационарного температурного поля:

		2. (22. 22. 22.)
		$\frac{\partial t}{\partial \tau} = a \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right)$
		$\partial \tau = (\partial x^2 + \partial y^2 + \partial z^2)$
		одномерногодвухмерного
		• трехмерного
ПК-1	208	Коэффициент а, входящий в это уравнение называется :
		NOW TO SELECT THE SELE
		$\frac{\partial t}{\partial t} = a \left(\frac{\partial^2 t}{\partial t} + \frac{\partial^2 t}{\partial t} + \frac{\partial^2 t}{\partial t} \right)$
		$\frac{\partial t}{\partial \tau} = a \left(\frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right)$
		 коэффициентом температуропроводности коэффициентом теплоотдачи
		• коэффициентом теплопроводности
		• коэффициентом теплопередачи
ПК-1	209	Граничное условие первого рода задается:
		• распределением температуры на поверхности тела для любого момен-
		та времени
		• плотностью теплового потока в каждой точке поверхности тела для лю-
		бого момента времени
		• температурой среды, окружающей тело, и законом теплообмена между
	040	поверхностью тела и окружающей средой
ПК-1	210	Граничное условие второго рода задается:
		• распределением температуры на поверхности тела для любого момента времени
		• плотностью теплового потока в каждой точке поверхности тела для лю-
		бого момента времени
		• температурой среды, окружающей тело, и законом теплообмена между
		поверхностью тела и окружающей средой
ПК-1	211	Граничное условие третьего рода задается:
		• распределением температуры на поверхности тела для любого момен-
		та времени
		• плотностью теплового потока в каждой точке поверхности тела для лю-
		 бого момента времени температурой среды, окружающей тело, и законом теплообмена между
		поверхностью тела и окружающей средой
ПК-1	212	F1 >> F2. Приведенная степень черноты, определяемая по уравнению, равна:
		1
		$\varepsilon_{nn} = \frac{1}{2}$
		$\varepsilon_{np} = \frac{1}{\frac{1}{\varepsilon_1} + \frac{F_1}{F_2} \left(\frac{1}{\varepsilon_2} - 1\right)}$
		$\frac{1}{E_{\star}} + \frac{1}{E_{\star}} \left(\frac{1}{E_{\star}} - 1 \right)$
		 επρ ≈ ε1 επρ ≈ ε2
		• επρ ≈ 0
		• επρ≈1
ПК-1	213	В процессе теплообмена при течении жидкости внутри труб, коэффициент теп-
		лоотдачи а,определяется из нижеприведенного уравнения при:
		1000
		$Nu = 0.021\varepsilon_L \operatorname{Re}^{0.8} \operatorname{Pr}^{0.43} (\operatorname{Pr}/\operatorname{Pr}_0)^{0.25},$
		• турбулентном режиме течения, Re>10000
		• ламинарном режиме течения, 0< Re <2300
ПК-3	214	• переходном режиме течения, 2300< Re <10000
11110	^{∠ 1 +}	В процессе теплообмена при течении жидкости внутри труб, коэффициент теплоотдачи α,определяется из нижеприведенного уравнения при:
		50 (20) V(10) 3(4)(2) 260(2)
		$Nu = 0.15 \varepsilon_L \operatorname{Re}^{0.33} \operatorname{Pr}^{0.43} Gr^{0.1} (\operatorname{Pr}/\operatorname{Pr}_0)^{0.25}$
		• турбулентном режиме течения, Re>10000
		• ламинарном режиме течения, Re>10000 • ламинарном режиме течения, 0< Re <2300
		• переходном режиме течения, 0< Re <10000
ПК-1	215	В процессе теплообмена при течении жидкости внутри труб, коэффициент теп-

		лоотдачи α, приблизительно определяется из нижеприведенного уравнения
		при:
		$Nu \approx 0.008 \mathrm{Re}^{0.9} \mathrm{Pr}^{0.43}$
		• турбулентном режиме течения, Re>10000
		• ламинарном режиме течения, 0< Re <2300
		• переходном режиме течения, 2300< Re <10000
ПК-1	216	Ниже приведенная формула, это закон
		$j_0 = c_1 / [\lambda^5 (e^{c_2 / \lambda T} - 1)]$
		• Планка
		• Вина
		• Киргофа
F16.4	0.17	• Стефана-Больцмана
ПК-1	217	Теплопроводность через плоскую стенку. Коэффициент теплопроводности λ = 1 Вт/(м•К), толщина стенки δ = 100 мм, t1 = 500°C, t2 = 400°C. Чему равна плотность теплового потока через стенку? • 1000 Вт/(м2 •К) • 10000 Вт/м2 • 160000 КВт/м2
ПК-3	240	• 16000 BT/M2
1111-3	218	В каких теплообменных аппаратах, при прочих равных условиях, обеспечивается больший средний температурный напор:
		• прямоточных
		• противоточных
ПК3	219	Для интенсификации теплопередачи оребряют ту поверхность стенки, теплоот-
		дача от которой
		• менее интенсивна
		• более интенсивна
ПК-3	220	На рисунке изображен
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		 прямоточный теплообменник противоточный теплообменник перекрестный теплообменник
ПК-3	221	На рисунке изображен

		 прямоточный теплообменник противоточный теплообменник
		• перекрестный теплообменник
ПК-1	222	Цикл Карно состоит из:
ПК-3	223	Проникновение воздуха в систему холодильной машины:
		• уменьшает холодопроизводительность
		• увеличивает холодопроизводительность
		• не сказывается на холодопроизводительности
ПК-3	224	В непрямоточных компрессорах пары хладагента в течение всего процесса:
ПК-3	225	Компрессоры многоступенчатого сжатия обеспечивают сжатие паров хладаген-
		та от давления всасывания до давления нагнетания: • в одном цилиндре • одновременно в двух цилиндрах
		• последовательно в различных цилиндрах
ПК-3	226	Конденсатор – часть холодильной машины, в которой:
		 воздух охлаждается посредством кипящего хладагента хладагент кипит за счет тепла, воспринимаемого от окружающей среды осуществляется отвод тепла от хладагента путем изменения его агрегатного состояния
ПК-3	227	Испаритель – часть холодильной машины, в которой:
		 осуществляется отвод тепла от хладагента путем изменения его агрегатного состояния хладагент кипит за счет тепла, воспринимаемого от окружающей среды
		• воздух охлаждается посредством кипящего хладагента
ПК-3	228	Воздухоохладитель – часть холодильной машины, в которой: • хладагент кипит за счет тепла, воспринимаемого от окружающей среды • воздух охлаждается посредством кипящего хладагента • осуществляется отвод тепла от хладагента путем изменения его агрегатного состояния
ПК-1	229	Холодопроизводительность холодильной машины — это: максимальная температура охлаждении количество тепла, отнимаемое от охлаждаемой среды в единицу времени коэффициент, определяющий ее экономичность
ПК-1	230	Естественное охлаждение – это:
ПК-1	231	Искусственное охлаждение – это:
	•	• •

	<u> </u>	
		• охлаждение тела атмосферным воздухом
		• понижение температуры тела ниже температуры окружающей среды
ПК-3	222	• охлаждение тела водой из артизианской скважины
1114-2	232	 Температурная область, называемая зоной умеренного холода: от температуры окружающей среды до -35 С
		• от температуры окружающей среды до -33 С
		• от 0 С до -50 С
ПК-1	233	Результатом обратного цикла Карно является:
	200	• перенос тепла с высшего температурного уровня на низший
		• перенос тепла с низшего температурного уровня на высшей
		• перенос тепла без затраты работы
ПК-3	234	Температурная область, называемая зоной глубокого холода:
		• от -35 С до -120С
		• от +120 К до 0 К
		• от 0 С до -120 С
ПК-3	235	В малых холодильных машинах чаще всего используются:
		• поршневые компрессоры
		• винтовые компрессоры
TI(0	000	• турбокомпрессоры
ПК-3	236	При «влажном» ходе компрессора:
		 вода попадает в контур холодильной машины снижается холодильная мощность и возникает угроза гидравлического
		удара • увеличивается холодопроизводительность
ПК-1	237	Холодильный агент – это:
1111	207	жидкость, смазывающая трущиеся части холодильной машины
		вещество, которое охлаждает конденсатор холодильной машины
		• вещество, охлаждаемое в испарителе холодильной машины
		• вещество, циркулирующее в контуре холодильной машины, с помощью
		которого осуществляется обратный термодинамический цикл
ПК-1	238	Фреоны – это:
		• вещества, обозначаемые по международной классификации буквой R
		• производные углеводородов, применяемые в качестве хладагентов
		• вещества, содержащие в своих молекулах атомы фтора
ПК-3	239	Фреоны и масла:
		• взаимно растворяются
		• взаимно не растворяются
ПК-1	240	• коагулируются
I IN- I	240	Результатом прямого цикла Карно является:
		 перенос тепла с высшего температурного уровня на низший перенос тепла с низшего температурного уровня на высшей
		• перенос тепла без затраты работы
ПК-1	241	Величина холодильного коэффициента определяет:
1111	271	• экономичность холодильной машины
		• холодопроизводительность холодильной машины
		• максимальную температуру охлаждения
ПК-3	242	Холодильный коэффициент машины, работающей по обратному циклу Карно:
		• зависит от природы рабочего вещества
		• является функцией абсолютных температур кипения и конденсации
		холодильного агента
		• не является функцией абсолютных температур кипения и конденсации
		холодильного агента
ПК-1	243	Дросселирование в регулирующем вентиле – это:
		• необратимый процесс, сопровождающийся увеличением энтропии
		• необратимый процесс, сопровождающийся уменьшением энтропии
		• обратимый адиабатический процесс
ПК-3	244	Детандер – элемент парокомпрессионной холодильной машины, в котором
		жидкий хладагент:
		• адиабатически расширяется, совершая полезную работу
		• адиабатически сжимается, совершая полезную работу
П(0	0.45	• расширяется по линии постоянной энтальпии
ПК-3	245	При применении взамен детандера регулирующего вентиля холодопроизводи-

		тельность парокомпрессионной холодильной машины:			
		возрастает			
		уменьшается			
		• не изменяется			
ПК-3	246	Конденсатор – элемент парокомпрессионной холодильной машины, в котором:			
		• хладагент расширяется, совершая полезную работу			
		• сжижаются пары хладагента			
		• хладагент сжимается с затратой полезной работы			

Критерии и шкалы оценки:

- оценка «зачтено» выставляется студенту, если он набрал более 51-100 %;
- оценка «не зачтено», выставляется студенту, если он набрал менее 0-50 %;

3.4 Кейс –задачи (задания) к зачету

Индекс компетенции	№ задания	Формулировка задания				
ПК-3, ПК-1	247	Ситуация: Вы работаете механиком на предприятии по перера- ботке сырья животного происхождения. Для хранения сжатых га- зов на предприятие поступили технологические резервуары. Вам поставлена задача проверить пригодность этих резервуаров для хранения газа в холодный период . Задание: Определить максимально допустимое давление газа в резервуаре при его хранении в зимний период				
ПК-3, ПК-1	248	Ситуация: Вы работаете механиком на предприятии по перера- ботке сырья животного происхождения. Вам поставлена для пе- ремещения сыпучих материалов внедрить пневмотранспорт. Задание: Подобрать компрессионную установку для обеспечения заданных режимов транспортирования с учетом производительно- сти пневмотранспортера.				
ПК-3, ПК-1	249	Ситуация: Вы работаете механиком на предприятии по перера- ботке сырья животного происхождения. Вам поставлена задача уменьшить потери теплоты от технологических трубопроводов. Задание: пользуясь методом анализа размерностей, получить за- висимость для расчета критического радиуса теплоизоляции на трубе, выбрать и обосновать выбор теплоизоляции.				
ПК-3, ПК-1	250	Ситуация: Вы работаете механиком на предприятии по перера- ботке сырья животного происхождения. При проведении техноло- гического процесса необходимо нагреть воду (или другую техноло- гическую жидкость) от начальной температуры t ₁ до конечной t ₂ насыщенным водяным паром. Объемный расход воды и давление пара известны. Задание: Подобрать необходимый теплообменый аппарат.				
ПК-3, ПК-1	251	Ситуация: Вы работаете механиком на предприятии по перера- ботке сырья животного происхождения. На предприятии имеется не использующийся теплообменный аппарат (техническая харак- теристика известна). При проведении технологического процесса необходимо нагреть воду (или другую технологическую жидкость) от начальной температуры t ₁ до конечной t ₂ насыщенным водяным паром. Задание: Проверить пригодность данного теплообменника для заданного технологического процесса.				
ПК-3, ПК-1	252	Ситуация: Вы работаете механиком на предприятии по переработке сырья животного происхождения. Вам поставлена задача:				

		для защиты от перегрева некоторых элементов технологического оборудования требуется уменьшить лучистый теплообмен. Задание: Обеспечить меры для снижения теплового потока излучением.			
ПК-3, ПК-1	253	Ситуация: Вы работаете механиком на предприятии по перера- ботке сырья животного происхождения. Вам поставлена задача увеличить вместимость камер хранения, охлаждения и заморозки. Задание: По известной величине теплопритоков и эксплуатаци- онной характеристики (холодопроизводительности, типоразмеру, температуре хранения, охлаждения или замораживания, виду продукта) подобрать основное и вспомогательное оборудование холодильного агрегата.			

Критерии и шкалы оценки.

Кейс – задача оценивается по уровневой шкале:

- **«первый уровень обученности»** студент не предложил вариантов решения сложившейся ситуации;
- **«второй уровень обученности»** студент разобрался в сложившейся ситуации, однако не выявил причины случившегося и не предложил вариантов решения;
- **«третий уровень обученности»** студент разобрался в сложившейся ситуации, выявил причины случившейся ситуации, предложил один вариант выхода из сложившейся ситуации;
- **«четвертый уровень обученности»** студент грамотно разобрался в ситуации, выявил причины случившейся ситуации, предложил несколько альтернативных вариантов выхода из сложившейся ситуации;
- оценка «зачтено» выставляется студенту, если он освоил второй, третий и четвертый уровень обученности;
- оценка «не зачтено» выставляется студенту, если он освоил первый уровень обученности.
- 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Для оценки знаний, умений, навыков студентов по дисциплине применяется рейтинговая система оценки студентов.

Рейтинговая система оценки осуществляется в течение всего семестра при проведении аудиторных занятий, показателем ОМ является текущий опрос в виде собеседования и сдачи отчета к ситуационной задаче по каждому разделу дисциплины.

Зачет проводится в виде тестового задания и кейс-задачи.

В случае неудовлетворительной сдачи зачета студенту предоставляется право повторной сдачи в срок, установленной для ликвидации академической задолженности по итогам соответствующей сессии.

Для получения оценки «зачтено» суммарная бально-рейтинговая оценка студента по результатам работы в семестре и на зачете должна быть не менее 60 баллов.

5. Матрица соответствия результатов обучения, показателей, критерием и шкал оценки

Результаты	•	,		Шкала оценки	
обучения (на основе обоб- щённых компе- тенций)	Предмет оценки (продукт или про- цесс)	Показатель оценки	Критерии оценки	Академическая оценка (зачте- но/незачтено)	Уровень освоения компетенции
ПК-1 способн			к проблем, возникающих в ходе професситствующий физико-математический аппа		ельности, и
Знать	Лекция СРС	Знает: основные закономерности и способы передачи тепла; законы превращения тепловой энергии в механическую работу; теорию теплообмена, основы массобмена; закономерности использования тепловой энергии в технологических процессах, связанных с работой гидроприводов, компрессорных установок, двигателей внутреннего сгорания и технологического оборудования используемого в транспортных и технологических машинах и оборудовании	Студент знает основные физические теории, необходимые для решения исследователь- ских и прикладных задач, связанных с расче- том, подбором и настройкой теплотехническо- го оборудования	Зачтено	Базовый
Уметь	Собеседование по практической работе Ситуационная зада-	Умеет: выявлять сущность научно-технических проблем, возникающих в ходе профессиональной дея-	Студент выполнил теплотехнические расчеты, используя методы и методики расчета оборудования необходимые для профессиональной деятельности	Зачтено	Продвинутый
уметь	ча к практической работе	тельности, и привлекать для их анализа соответствующий физикоматематический аппарат	Студент не выполнил теплотехнические расчеты.	Не зачтено	Не освоено
Владеть	Кейс-задача Тест	Имеет навыки: энергетического и технологического использования тепла; охраны окружающей среды и энергосбережения;	Студент разобрался в поставленной задаче. При расчете теплотехнического оборудования использовал необходимую нормативную и техническую документацию, обосновал техническую возможность использования технологического оборудования	Зачтено	Высокий
			Студент не разобрался в поставленной задаче. Не предложил способов и методов ее решения.	Не зачтено	Не освоено

(ПК-3) готовность выполнять расчетно-экспериментальные работы и решать научно-технические задачи в области холодильной, криогенной техники и систем жизнеобеспечения на основе достижений техники и технологий, классических и технических теорий и методов, теплофизических, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным процессам, машинам и аппаратам

ным процессам, машинам и аппаратам							
Знать	Лекция СРС	Знает: закономерности и принцип работы тепловых процессов лежащих в основе расчета и выбора источника нагрева изделий при различных технологических процессах; тепло-массобменые устройства основную терминологию и символику; топливо и основы горения; принципы работы и конструкции различных аппаратов, служащих для целей преобразования энергии топлива в тепловую и тепловой энергии в механическую; теплогенерирующие устройства, холодильную и криогенную технику	Студент знает для каких процессов предна- значено теплотехническое оборудование, знает способы безопасной эксплуатации теп- лотехнического оборудования	Зачтено	Базовый		
Уметь	Собеседование по практической рабо- те Ситуационная зада- ча к практической работе	Умеет: выполнять расчетно-экспериментальные работы и решать научнотехнические задачи в области холодильной, криогенной тех-	Студент умеет на практике проверить состояние теплотехнического оборудования, применяет способы и методы безопасной эксплуатации теплотехнического оборудования	Зачтено	Продвинутый		
		ники и систем жизнеобеспечения на основе достижений техники и технологий, классических и технических теорий и методов, теплофизических, математических и компьютерных моделей, обладающих высокой степенью адекватности реальным процессам, машинам и аппаратам; анализировать тепловые процессы в машинах и аппаратах для разработки оптимальных режимов их работы в различных технологических системах	Студент не умеет на практике проверять со- стояние теплотехнического оборудования, не умеет применять способы и методы безопас- ной эксплуатации теплотехнического обору- дования	Не зачтено	Не освоено		
Владеть	Кейс-задача Тест	Имеет навыки: экономии тепловой энергии применительно к холодоиспользующему оборудованию, технологических машин; основных	Студент разобрался в поставленной задаче. При эксплуатации и настройке оборудования использовал необходимую нормативную и техническую документацию, обосновал техническую возможность использования техноло-	Зачтено	Высокий		

направлениях экономии энергоресурсов; использовании	гического оборудования		
вторичных энергоресурсов	Студент не разобрался в поставленной задаче. Не предложил способов и методов ее ре-	Не зачтено	Не освоено
	шения.		