МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНЫХ ТЕХНОЛОГИЙ»

	УТВЕРЖДАЮ Проректор по учебной работе		
	(подпи	ісь) Ва	исиленко В.Н. (Ф.И.О.)
	"_25"	05	2023 г.
РАБОЧАЯ ПРОГР	AMMA		
дисциплины	ol		
ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЬ	ы и про	изводо	СТВА
Направление подг	тотовки		
15.03.04 Автоматизация технологичес	ких проце	ссов и пр	оизводств
Направленность (профиль) подготов	ки	
Автоматизация технологических процесо химической промы			в пищевой и
химической промыц	шленност	<u>1</u>	
Квалификация вы	пускника		
бакалавр)		

1. Цели и задачи дисциплины

Целями освоения дисциплины «Технологические процессы и производства» является формирование у обучающихся теоретических знаний, практических умений и навыков, необходимых при осуществлении производственно-технологической, проектно-конструкторской и других видов деятельности в области автоматизации технологических процессов и производств.

Задачи дисциплины:

- участие в разработке мероприятий по улучшению качества выпускаемой продукции, технического обеспечения ее изготовления, практическому внедрению мероприятий на производстве;
- выявление причин появления брака продукции, разработка мероприятий по его устранению, контроль соблюдения на рабочих местах технологической дисциплины;
- участие во внедрении и корректировке технологических процессов, средств и систем автоматизации, управления, контроля, диагностики при подготовке производства новой продукции, оценке ее конкурентоспособности;
- сбор и анализ исходных информационных данных для проектирования технических средств систем автоматизации и управления производственными и технологическими процессами, оборудованием, жизненным циклом продукции, ее качеством, контроля, диагностики и испытаний.

Объектами профессиональной деятельности являются продукция и оборудование различного служебного назначения предприятий и организаций, производственные и технологические процессы ее изготовления.

2. Перечень планируемых результатов обучения, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины в соответствии с предусмотренными компетенциями обучающийся должен:

	Код		В результате изучения уч	ебной дисциплины	обучающийся должен:
№ п/п	компе- тен- ции	Содержание компетенции	знать	уметь	владеть
1	ОПК-1	способность использовать основные закономерности, действующие в процессе изготовления продукции требуемого качества, заданного количества при наименьших затратах общественного труда	основные закономерности, действующие в процессе изготовления продукции требуемого качества, за- данного количества	использовать основные закономерности, действующие в процессе изготовления продукции требуемого качества, заданного количества при реализации технологических процессов	способностью исполь- зовать основные зако- номерности, дейст- вующие в процессе изготовления продук- ции требуемого каче- ства, заданного коли- чества при реализации технологических про- цессов
2	ПК-3	готовность применять способы рационального использования сырьевых, энергетических и других видов ресур-	технологические процессы и производства, современные методы разработки малоотходных, энергосберегающих и экологичных технологий	проводить техно- логические про- цессы, разраба- тывать малоот- ходные, энерго- сберегающие и экологичные тех-	современными методами разработки малоотходных, энергосберегающих и экологичных технологий при реализации технологических процессов

		сов, современные методы разработки малоотходных, энергосберегающих и экологически чистых технологий, средства автоматизации технологических процессов и производств		нологии	соответствующих про-изводств
3	ПК-31	способность выявлять причины появления брака продукции, разрабатывать мероприятия по его устранению, контролировать соблюдение технологической дисциплины на рабочих местах	причины появления брака продукции и состав мероприятий по его устранению, технологическую дисциплину	выявить брак продукции и раз- работать меро- приятия по его устранению, ор- ганизовать меро- приятия для кон- троля технологи- ческой дисципли- ны на рабочих местах	способами выявления и устранения брака продукции, контроля соблюдения техноло- гической дисциплины на рабочих местах
4	ПК-32	способность уча- ствовать во вне- дрении и коррек- тировке техноло- гических процес- сов, средств и систем автома- тизации, управ- ления, контроля, диагностики при подготовке про- изводства новой продукции и оценке ее конку- рентоспособно- сти	технологические процессы, основные показатели их интенсивности, принципы оценки конкурентоспособности продукции	оценивать интенсивность технологических процессов, конкурентоспособность новой продукции	методикой корректировки технологических процессов при подготовке производства новой продукции и оценке ее конкурентоспособности

3. Место дисциплины в структуре ОП ВО

Дисциплина «Технологические процессы и производства» относится к блоку 1 ОП вариативной части.

Изучение дисциплины основано на знаниях, умениях и навыках, полученных при изучении обучающимися дисциплин: «Химия», «Физика», «Математика», «Экология», «Введение в профессиональную деятельность», «Введение в специальность».

Дисциплина «Технологические процессы и производства» является предшествующей для изучения: «Проектирование автоматизированных систем», «Автоматизация технологических процессов и производств», «Автоматизация управления жизненным циклом и качеством продукции», «Роботизация химико-технологических процессов и автоматизация гибких производств».

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет <u>5</u> зачетных единиц.

Виды учебной работы	Всего часов	Семестр	
	-	4	5
	акад.	акад.	акад.
Общая трудоемкость дисциплины	180	72	108
Контактная работа, в т.ч. аудиторные занятия:	82,85	37	45,85
Лекции	33	18	15
Лабораторные работы (ЛР)	48	18	30
в том числе в форме практической подготовки	10	4	6
Консультации текущие	1,65	0,9	0,75
Виды аттестации (зачет/зачет)	0,2	0,1	0,1
Самостоятельная работа:	97,15	35	62,15
Проработка материалов по конспекту лекций (собеседова-	16,15	9	7,15
ние, тестирование, решение кейс-заданий)			
Проработка материалов по учебнику (собеседование, тес-	52	17	35
тирование, решение кейс-заданий)			
Подготовка к защите лабораторных работ (собеседование,	29	9	20
тестирование, решение кейс-заданий)			

5 Содержание дисциплины, структурированное по разделам с указанием отведенного на них количества академических часов и видов учебных занятий

5.1 Содержание разделов дисциплины

№ п/п	Наименование раздела дис-	Содержание раздела	Трудоемкость раздела, часы	
	4 семестр			
1.	Введение	Предмет и задачи курса «Технологические процессы и производства». Современные задачи пищевой и химической промышленности. Классификация основных технологических процессов. Общие принципы анализа и расчета процессов и оборудования: материальный и энергетический балансы, интенсивность, эффективность, скорость, движущая сила процесса, сопротивление переносу. Принципы оценки конкурентоспособности новой продукции.	3	
2.	Современные методы разработки малоотходных, энергосберегающих и экологически чистых технологий	Малоотходные и безотходные технологии. Критерии безотходности. Принципы безотходных технологий: системность; комплексность использования ресурсов; цикличность материальных потоков; минимальное влияние на окружающую природную и социальную среду. Понятие энергосберегающей технологии. Цели и задачи энергосбережения. Основные направления: полезное использование (утилизация) энергетических потерь; модернизация оборудования с целью уменьшения потерь энергии; интенсивное энергосбережение. Экологизация производства.	4	
3.	Гидравлические процессы транспортирования технологических сред	Жидкие технологические среды, как объект исследования. Характеристики движения жидкости. Математическое описание движения и равновесия. Уравнения энергии. Потери энергии. Гидравлические машины. Основные характеристики и параметры. Способы корректировки процессов транспортирования жидких технологических сред при подготовке произ-	36	

Гидромеханические процессы и оборудование для их реализации	водства новой продукции. Способы регулирования работы гидравлических машин с целью изготовления продукции в заданном количестве, требуемого качества. Оценка конкурентоспособности. Технологическая дисциплина при обслуживании насосных установок. Роль гидромеханических процессов в пищевых и химических производствах. Классификация технологических процессов. Течение жидкости через зернистые и пористые слои. Математическое описание процесса. Гидродинамика псевдоожиженного слоя. Интенсивность и эффективность псевдоожижения. Явление пневмотранспорта. Физическая сущность процесса осаждения. Основные закономерности процесса, показатели, влияющие на качество и количество выпускаемой продукции. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака конечных продуктов процесса осаждения и способы их устранения. Технологическая дисциплина при обслуживании отстойников. Фильтрование. Физическая сущность процесса. Движущая сила, сопротивление фильтрования. Уравнения при постоянном перепаде давления и постоянной скорости процесса. Показатели, влияющие на качество и количество выпускаемой продукции. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака конечных продуктов процесса фильтрования и способы их устранения. Технологическая дисциплина при работе на фильтрованых станциях. Перемешивание в жидких средах. Виды перемешивания. Механическое перемешивании. Интенсивность и эффективность перемешивания. Показатели, влияющие на качество и количество выпускаемой продукции. Энергосбережение при перемешивании. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака конечных продуктов процесса перемешивания и способы их устранения. Технологическая диспособы их устранения. Технологическая диспособы их устранения. Технологическая диспособы их устранения. Технологическая дис	28		
	устройств.			
5 семестр				
Гидромеханические процессы и оборудование для их реализации	Физическая сущность процесса осаждения. Основные закономерности процесса, показатели, влияющие на качество и количество выпускаемой продукции. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака конечных продуктов процесса осаждения и способы их устранения. Технологическая дисциплина при обслуживании отстойников. Фильтрование. Физическая сущность процесса. Движущая сила, сопротивление фильтрования. Уравнения при постоянном перепаде	20		
	Гидромеханические процессы и оборудование для их реа-	вания работы гидравлических машии с целью изготовления продукция в заданном количестве, требуемого качества. Оценка конкурентоспособности. Технологическая дисциплина при обслуживании насосных установок. Роль гидромеханических процессов в пищевых технологических процессов в пищевых технологических систем. Классификация технологических систем. Классификация технологических процессов. Технороднамика псевдоожиженного слоя. Интексивность и эффективность псевдоожижения. Явление пневмогранспорта. Физическая сущность процесса саждения, Основные закономерности процесса посаждения, процесса процесса, показатели, влияющие на качество и количество выпускаемой продукции, оценка ее конкурентоспособности. Возможные причины брака конечных продуктов процесса осаждения и способы их устранения. Технологическая сущность процесса дамения и постоянном перепаде давления и постоянном перепаде давления и постоянном перепаде давления и постоянном перепаде давления и постоянном перепаде замения и постоянном перепаде замения и постоянном способы их устранения. Технологическая дисциплина при способы их устранения. Технологическая дисциплина при рабосе и куличество выпускаемой продукции, оценка ее конкурентоспособности. Возможные причины брака конечных продуктов процесса фильтрования и постоянном способы их устранения. Технологическая дисциплина при рабосе на фильтрования и постояния при способы их устранения. Технологическая дисциплина при рабосе на фильтрования и пособы их устранения. Технологическая дисциплина при рабосе премешивании и способы их устранения. Технологическая дисциплина при перемешивании и способы их устранения. Технологическая дисциплина при перемешивании перемешивании и способы их устранения. Технологическая дисциплина при обогуживании перемешивании и способы их устранения. Технологическая дисциплина при обстуживании перемешивании и способы их устранения. Технологическая дисциплина при обстуживании отготейников. Фильтрование. Физическов горимерство ыгоком продукции, оценка ее конкурентоспособности. Возможные причины б		

		Показатели, влияющие на качество и количество выпускаемой продукции. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака конечных продуктов процесса фильтрования и способы их устранения. Технологическая дисциплина при работе на фильтровальных станциях. Перемешивание в жидких средах. Виды перемешивания. Механическое перемешивание. Интенсивность и эффективность перемешивания. Показатели, влияющие на качество и количество выпускаемой продукции. Энергосбережение при перемешивании. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака конечных продуктов процесса перемешивания и способы их устранения. Технологическая дисциплина при обслуживании перемешивающих устройств.	
5.	Тепловые процессы и аппараты	Значение процессов теплообмена в химической и пищевой промышленности. Виды переноса тепла, их характеристики. Основы теплопередачи. Математическое описание процессов теплопроводности; дифференциальное уравнение теплопроводности; дифференциальное уравнение теплопроводности; дифференциальное уравнение теории теплового подобия при моделировании тепловых процессов. Критериальное уравнение теплоотдачи. Уравнение теплопередачи для плоской и цилиндрической стенок. Связь между коэффициентом теплопередачи и коэффициентами теплоотдачи. Определение средней движущей силы процесса теплопередачи при переменных температурах теплоносителей. Промышленные способы подвода и отвода теплоты в технологической аппаратуре. Показатели процесса, влияющие на количество и качество выпускаемой продукции, возможные причины брака и способы их устранения. Способы интенсификации процесса теплопередачи. Технологическая дисциплина при работе с теплообменной аппаратурой. Выпаривание. Физическая сущность процесса. Методы проведения выпаривания. Материальный и тепловой балансы. Показатели, влияющие на качество и количество выпускаемой продукции: общая и полезная разность температур, расход греющего пара и поверхность теплообмена. Однокорпусные и многокорпусные выпарные установки, преимущества многократного выпаривания. Экономически целесообразное число корпусов выпарной установки при подготовке производства новой продукции. Возможные причины брака и способы их устранения. Технологическая дисциплина при работе на выпарных установках.	34
6.	Массообменные процессы и аппараты	Общие сведения о массообменных процессах. Классификация и их общая характеристика. Основы массопередачи со свободной грани- цей раздела фаз газ (пар) - жидкость, жид- кость - жидкость. Законы фазового распреде-	52,15

ления (равновесия). Направление протекания массообменных процессов. Молекулярный и конвективный массоперенос. Уравнение массоотдачи. Критерии диффузионного подобия. Критериальное уравнение массоотдачи. Выражение коэффициента массопередачи через коэффициенты массоотдачи. Средняя движущая сила процессов массопередачи. Расчет массообменных аппаратов.

Абсорбция. Общие сведения о процессе и области его практического применения. Материальный баланс процесса. Уравнение линий рабочих концентраций. Минимальный и оптимальный расходы абсорбента. Абсорбция, сопровождаемая химической реакцией. Фактор ускорения. Показатели, влияющие на качество и количество продуктов абсорбции. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака продуктов абсорбции и способы их устранения. Конструкции абсорберов и технологическая дисциплина при работе на абсорбционных установках.

Перегонка жидкостей. Простая перегонка и ректификация. Равновесие в системе пар жидкость. Закон Рауля. Уравнение линии равновесия. Схема установок периодической и непрерывной ректификации. Материальный баланс непрерывной ректификации бинарных смесей. Уравнение линий рабочих концентраций укрепляющей и исчерпывающей частей ректификационной колонны. Тепловой баланс колонны. ректификационной Показатели, влияющие на качество и количество ректификата. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака ректификата и способы их устранения. Типы ректификационных колонн и технологическая дисциплина при работе на колонных аппаратах.

Массообмен между жидкостью (газом или паром) и твердым телом. Массоперенос в твердой фазе. Массоперенос во внешней фазе. Основные характеристики пористых тел. Адсорбция. Адсорбенты. Условия десорбции. Материальный баланс процесса. Показатели, влияющие на качество и количество продуктов адсорбции. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака продуктов адсорбции и способы их устранения. Принципиальные схемы адсорбционных процессов. Адсорбционная аппаратура и технологическая дисциплина при работе на ней.

Сушка. Общие сведения. Конвективная сушка влажных материалов. Физические свойства влажного воздуха. Диаграмма I - х. Материальные балансы сушильных установок. Расход теплоносителей. Тепловые балансы сушильных установок. Теоретическая и действительная сушилка. Основы кинетики процесса конвективной сушки: свойства влажных материалов, кинетическая кривая конвективной

	сушки, определение продолжительности пер-	
	вого периода сушки, определение продолжи-	
	тельности второго периода сушки. Показате-	
	ли, влияющие на качество и количество вы-	
	пускаемой продукции. Способы интенсифика-	
	ции процесса при подготовке производства	
	новой продукции, оценка ее конкурентоспо-	
	собности. Возможные причины брака высу-	
	шенного материала и способы их устранения.	
	Конструкции сушилок и технологическая дис-	
	циплина при работе на сушильных установках.	
<u>i </u>		

5.2 Разделы дисциплины и виды занятий

	0:2 : «9H01:2: H1:04:::::::::::::::::::::::::::::::::::	• • • • • • • • • • • • • • • • • • • •		
Nº	Наименование раздела дисциплины	Лекции, час	ЛР,	СРО, час
п/п	1 11 11		час	
	4 ce	еместр		
1.	Введение	2		1
2.	Современные методы разработки мало- отходных, энергосберегающих и экологи- чески чистых технологий	2		2
3.	Гидравлические процессы транспортирования технологических сред	6	14	16
4.	Гидромеханические процессы и оборудование для их реализации	8	4	16
	5 ce	еместр		
4.	Гидромеханические процессы и оборудо-		10	10
	вание для их реализации		1	· •
5.	Тепловые процессы и аппараты	6	4	24
6.	Массообменные процессы и аппараты	9	16	27,15

5.2.1 Лекции

	5.2.1 Лекции		T
N º	Наименование раздела дисцип-	Тематика лекционных занятий	Трудоемкость,
п/п	ЛИНЫ	·	час
	December	4 семестр	
1.	Введение	Предмет и задачи курса «Технологические процессы и производства». Современные задачи пищевой и химической промышленности. Классификация основных технологических процессов. Общие принципы анализа и расчета процессов и оборудования: материальный и энергетический балансы, интенсивность, эффективность, скорость, движущая сила процесса, сопротивление переносу. Принципы оценки конкурентоспособности новой продукции.	2
2.	Современные методы разра- ботки малоотходных, энерго- сберегающих и экологически чистых технологий	Малоотходные и безотходные технологии. Критерии безотходности. Принципы безотходных технологий: системность; комплексность использования ресурсов; цикличность материальных потоков; минимальное влияние на окружающую природную и социальную среду. Понятие энергосберегающей технологии. Цели и задачи энергосбережения. Основные направления: полезное использование (утилизация) энергетических потерь; модернизация оборудования с целью уменьшения потерь энергии; интенсивное энергосбережение. Экологизация производства.	2
3.	Гидравлические процессы транспортирования технологических сред	Жидкие технологические среды, как объект исследования. Характеристики движения жидкости. Математическое	6

		описание движения и равновесия. Урав-	
		нения энергии. Потери энергии. Гидрав-	
		лические машины. Основные характери-	
		стики и параметры. Способы корректи-	
		ровки процессов транспортирования	
		жидких технологических сред при подго-	
		товке производства новой продукции.	
		Способы регулирования работы гидрав-	
		лических машин с целью изготовления	
		продукции в заданном количестве, тре-	
		буемого качества. Оценка конкуренто-	
		способности. Технологическая дисцип-	
		лина при обслуживании насосных уста-	
		новок.	
	Гидромеханические процессы и	Роль гидромеханических процессов в	
	оборудование для их реализа-	пищевых и химических производствах.	
	1	Классификация технологических систем.	
	ции	Классификация технологических систем.	
		· · · · · · · · · · · · · · · · · · ·	
		цессов. Течение жидкости через зерни-	
		стые и пористые слои. Математическое	
		описание процесса. Гидродинамика	
		псевдоожиженного слоя. Интенсивность	
		и эффективность псевдоожижения. Яв-	
		ление пневмотранспорта.	
		Физическая сущность процесса осажде-	
		ния. Основные закономерности процес-	
		са, показатели, влияющие на качество и	
		количество выпускаемой продукции.	
		Способы интенсификации процесса при	
		подготовке производства новой продук-	
		ции, оценка ее конкурентоспособности.	
		Возможные причины брака конечных	
		продуктов процесса осаждения и спосо-	
		бы их устранения. Технологическая	
		дисциплина при обслуживании отстой-	
		ников.	
		Фильтрование. Физическая сущность	
		процесса. Движущая сила, сопротивле-	
		ние фильтрования. Уравнения при по-	
		стоянном перепаде давления и постоян-	
4.		ной скорости процесса. Показатели,	8
		влияющие на качество и количество вы-	
		пускаемой продукции. Способы интен-	
		сификации процесса при подготовке	
		производства новой продукции, оценка	
		ее конкурентоспособности. Возможные	
		причины брака конечных продуктов про-	
		цесса фильтрования и способы их уст-	
		ранения. Технологическая дисциплина	
		при работе на фильтровальных станци-	
		RX.	
		Перемешивание в жидких средах. Виды	
		перемешивания. Механическое пере-	
		мешивание. Интенсивность и эффектив-	
		ность перемешивания. Показатели,	
		влияющие на качество и количество вы-	
		пускаемой продукции. Энергосбереже-	
		ние при перемешивании. Способы ин-	
		тенсификации процесса при подготовке	
		производства новой продукции, оценка	
		ее конкурентоспособности. Возможные	
		причины брака конечных продуктов про-	
		цесса перемешивания и способы их уст-	
		ранения. Технологическая дисциплина	
		при обслуживании перемешивающих	
		устройств.	

		5 семестр	
5.	Тепловые процессы и аппараты	Значение процессов теплообмена в химической и пищевой промышленности. Виды переноса тепла, их характеристики. Основы теплопередачи. Математическое описание процессов теплообмена: дифференциальное уравнение теплопроводности; дифференциальное уравнение конвективного переноса теплоты. Применение теории теплового подобия при моделировании тепловых процессов. Критериальное уравнение теплоотдачи. Уравнение теплопередачи для плоской и цилиндрической стенок. Связь между коэффициентом теплопередачи и коэффициентами теплоотдачи. Определение средней движущей силы процесса теплопередачи при переменных температурах теплоносителей. Промышленные способы подвода и отвода теплоты в технологической аппаратуре. Показатели процесса, влияющие на количество и качество выпускаемой продукции, возможные причины брака и способы их устранения. Способы интенсификации процесса теплопередачи. Технологическая дисциплина при работе с теплообменной аппаратурой. Выпаривание. Физическая сущность процесса. Методы проведения выпаривания. Материальный и тепловой балансы. Показатели, влияющие на качество и количество выпускаемой продукции: общая и полезная разность температур, расход греющего пара и поверхность теплообмена. Однокорпусные и многокорпусные выпарные установки, преимущества многократного выпаривания. Экономически целесообразное число корпусов выпарной установки при подготовке производства новой продукции. Возможные причины брака и способы их устранения. Технологическая дисциплина при работе на выпарных установках.	6
6.	Массообменные процессы и аппараты	Общие сведения о массообменных процессах. Классификация и их общая характеристика. Основы массопередачи со свободной границей раздела фаз газ (пар) - жидкость, жидкость - жидкость. Законы фазового распределения (равновесия). Направление протекания массообменных процессов. Молекулярный и конвективный массоперенос. Уравнение массоотдачи. Критерии диффузионного подобия. Критериальное уравнение массоотдачи. Выражение коэффициента массоотдачи. Выражение коэффициента массоотдачи. Средняя движущая сила процессов массопередачи. Расчет массообменных аппаратов. Абсорбция. Общие сведения о процессе и области его практического применения. Материальный баланс процесса.	9

Уравнение линий рабочих концентраций. Минимальный и оптимальный расходы абсорбента. Абсорбция, сопровождаемая химической реакцией. Фактор ускорения. Показатели, влияющие на качество и количество продуктов абсорбции. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака продуктов абсорбции и способы их устранения. Конструкции абсорберов и технологическая дисциплина при работе на абсорбционных установках.

Перегонка жидкостей. Простая перегонка и ректификация. Равновесие в системе пар - жидкость. Закон Рауля. Уравнение линии равновесия. Схема установок периодической и непрерывной ректификации. Материальный баланс непрерывной ректификации бинарных смесей. Уравнение линий рабочих концентраций укрепляющей и исчерпывающей частей ректификационной колонны. Тепловой баланс ректификационной колонны. Показатели, влияющие на качество и количество ректификата. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее Возможные конкурентоспособности. причины брака ректификата и способы их устранения. Типы ректификационных колонн и технологическая дисциплина при работе на колонных аппаратах.

Массообмен между жидкостью (газом или паром) и твердым телом. Массоперенос в твердой фазе. Массоперенос во внешней фазе. Основные характеристики пористых тел. Адсорбция. Адсорбенты. Условия десорбции. Материальный баланс процесса. Показатели, влияющие на качество и количество продуктов адсорбции. Способы интенсификации процесса при подготовке производства новой продукции, оценка ее конкурентоспособности. Возможные причины брака продуктов адсорбции и способы их устранения. Принципиальные схемы адсорбционных процессов. Адсорбционная аппаратура и технологическая дисциплина при работе на ней.

Сушка. Общие сведения. Конвективная сушка влажных материалов. Физические свойства влажного воздуха. Диаграмма I - х. Материальные балансы сушильных установок. Расход теплоносителей. Тепловые балансы сушильных установок. Теоретическая и действительная сушилка. Основы кинетики процесса конвективной сушки: свойства влажных материалов, кинетическая кривая конвективной сушки, определение продолжительности первого периода сушки, определение продолжительности второго периода сушки. Показатели, влияющие на качество и количество выпускаемой

процесса при по новой продукции способности. Воз высушенного ма устранения. Ко	особы интенсификации одготовке производства и, оценка ее конкуренто- зможные причины брака атериала и способы их Конструкции сушилок и и дисциплина при работе становках.
--	--

5.2.2 Практические занятия Не предусмотрены.

5.2.3 Лабораторный практикум

J	5.2.3 Лабораторный практикум	1	
№ п/п	Наименование раздела дисцип- лины	Наименование лабораторных работ	Трудоемкость, час
		4 семестр	
1.	Введение		
2.	Современные методы разработки малоотходных, энергосберегающих и экологически чистых технологий		
	Гидравлические процессы транспортирования технологических сред	Относительный покой жидкости в равномерно вращающемся вокруг вертикальной оси цилиндрическом сосуде	2
3.	1	Изучение режимов движения жидкости	4
		Материальный и энергетический балансы потока	4
		Испытание центробежного вентилятора	4
4.	Гидромеханические процессы и оборудование для их реализации	Изучение гидродинамики взвешенного слоя	4
		5 семестр	
4.	Гидромеханические процессы и оборудование для их реализации	Осаждение под действием силы тяжести	4
		Определение констант процесса фильтрования	4
		Определение расхода мощности на перемешивание в жидких средах	2
5.	Тепловые процессы и аппараты	Исследование процесса теплопередачи в теплообменнике типа «труба в трубе»	4
6.	Массообменные процессы и аппараты	Изучение гидродинамики колпачковой тарелки	4
		Изучение процесса абсорбции углекислого газа водой в аппарате с механическим перемешиванием	4
		Экспериментальная проверка дифференциального уравнения простой перегонки	4
		Изучение кинетики процесса конвективной сушки	4

5.2.4 Самостоятельная работа обучающихся (СРО)

Nº ⊓/⊓	Наименование раздела дисциплины Вид СРО		Трудоемкость, час
		4 семестр	
1.	Введение	Подготовка к собеседованию (лекции, учебник)	1
2.	Современные методы разработки малоотходных, энергосберегающих и экологически чистых технологий	Подготовка к собеседованию (лекции, учебник) Тест (лекции, учебник)	2 1 1

	Гидравлические процессы транспортирования техно-	Подготовка к собеседованию (лекции, учебник,	16
_	логических сред	лабораторные работы)	5
3.	,	Тест (лекции, учебник, лабораторные работы) Кейс-задания (лекции, учебник, лабораторные	6
		работы)	5
	Гидромеханические про-		16
	цессы и оборудование для	Подготовка к собеседованию (лекции, учебник,	_
4.	их реализации	лабораторные работы)	5 5
		Тест (лекции, учебник, лабораторные работы) Кейс-задания (лекции, учебник, лабораторные	5
		работы)	6
	<u> </u>	5 семестр	10
	Гидромеханические про-		10
	цессы и оборудование для	Подготовка к собеседованию (лекции, учебник,	
4.	их реализации	лабораторные работы)	4
4.		Тест (лекции, учебник, лабораторные работы)	3
		Кейс-задания (лекции, учебник, лабораторные	
		работы)	3
	Тепловые процессы и аппа-		24
	раты	Подготовка к собеседованию (лекции, учебник,	
5.		лабораторные работы) Тест (лекции, учебник, лабораторные работы)	8
		Гест (лекции, учеоник, лаоораторные раооты) Кейс-задания (лекции, учебник, лабораторные	0
		работы)	8
	Массообменные процессы и		27,15
	аппараты	Подготовка к собеседованию (лекции, учебник,	,
6.	-	лабораторные работы)	9
О.		Тест (лекции, учебник, лабораторные работы)	9
		Кейс-задания (лекции, учебник, лабораторные	
		работы)	9,15

6 Учебно-методическое и информационное обеспечение дисциплины

6.1 Основная литература

- 1. Процессы и аппараты пищевых производств [Текст] : учебник для студентов вузов (гриф УМО) / А. Н. Остриков [и др.]. 2-е изд., испр. и доп. Санкт-Петербург : Проспект Науки, 2020. 640 с.: ил.
- 2. Касаткин, А. Г. Основные процессы и аппараты химической технологии [Текст] : учебник (гриф МО). Стер. изд. М. : Альянс, 2014. 752 с.
- 3. Остриков, А.Н. Лабораторный практикум по процессам и аппаратам: учебное пособие [Электронный ресурс]: учебное пособие / А.Н. Остриков, А.В. Логинов, Л.Н. Ананьева [и др.] Электрон. дан. Воронеж: ВГУИТ (Воронежский государственный университет инженерных технологий), 2012. 281 с. Режим доступа: http://e.lanbook.com/book/5820
- 4. Процессы и аппараты (основы механики жидкости и газа) [Текст] : практикум : учебное пособие / А. Н. Остриков [и др.]; ВГУИТ, Кафедра технологии жиров, процессов и аппаратов химических и пищевых производств. Воронеж : ВГУИТ, 2018. 231 с. Режим доступа: https://biblioclub.ru/index.php?page=book&id=488017

6.2 Дополнительная литература

1. Расчет и проектирование массообменных аппаратов: Учебное пособие/Под научной ред. Профессора А.Н. Острикова. – СПб.: Издательство «Лань» - 2015. – 352 с.: ил. – (Учебники для вузов. Специальная литература). Режим доступа: http://e.lanbook.com/book/56170

- 2. Расчет и проектирование теплообменников [Текст]: учебник/А.Н. Остриков, А.В. Логинов, А.С. Попов, И.Н. Болгова; Воронеж. гос. технол. акад. Воронеж: ВГТА, 2011. 440 с. Режим доступа: http://biblos.vsuet.ru/ProtectedView/Book/ViewBook/715
- 3. Баранов, Д.А. Процессы и аппараты химической технологии [Электронный ресурс] : учебное пособие / Д.А. Баранов. Электрон. дан. Санкт-Петербург : Лань, 2018. 408 с. Режим доступа: https://e.lanbook.com/book/98234.
- 4. Остриков, А.Н. Расчет и проектирование сушильных аппаратов [Электронный ресурс] : учебное пособие / А.Н. Остриков, М.И. Слюсарев, Е.Ю. Желтоухова. Электрон. дан. Санкт-Петербург : Лань, 2018. 352 с. Режим доступа: https://e.lanbook.com/book/105992.
- 5. Остриков, А.Н. Расчет и проектирование аппаратов для механических и гидромеханических процессов [Электронный ресурс] : учебное пособие / А.Н. Остриков, В.Н. Василенко, Л.Н. Фролова, А.В. Терёхина. Электрон. дан. Санкт-Петербург : , 2018. 360 с. Режим доступа: https://e.lanbook.com/book/105819
- 5. Лащинский, А. А. Основы конструирования и расчета химической аппаратуры [Текст]: справочник. 4-е изд., стер. М.: АльянС, 2013. 752 с.
- 6. Гидравлика, гидромашины и гидроприводы [Текст] : учебник для студ. технич. вузов (гриф МО) / Т. М. Башта [и др.]. 4-е изд., стер. М. : Альянс, 2010. 423 с.
- 7. Фролов, В.Ф. Методы расчёта процессов и аппаратов химической технологии: (примеры и задачи): учебное пособие / В.Ф. Фролов, П.Г. Романков, О.М. Флисок. Санкт-Петербург: Химиздат, 2010. 544 с. ISBN 978-5-93808-182-6; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=98345

6.3 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся

Остриков А.Н. Аттестационно-педагогические измерительные материалы для аттестации студентов по курсу «Процессы и аппараты пищевых производств» [Текст] : учеб. пособие /А.Н. Остриков, В.С. Калинина, И.С. Наумченко; Воронеж. гос. технол. акад. – Воронеж : ВГТА, 2010. – 171 с. Режим доступа: http://e.lanbook.com/book/5821

Остриков, А.Н. Лабораторный практикум по процессам и аппаратам: учебное пособие / А.Н. Остриков, А.В. Логинов, Л.Н. Ананьева [и др.] — Воронеж: ВГУИТ (Воронежский государственный университет инженерных технологий), 2012. — 281 с. Режим доступа: http://e.lanbook.com/book/5820

Болгова, И. Н. Технологические процессы и производства [Электронный ресурс] : методические указания и задания для контрольных работ студентов заочной формы обучения / И. Н. Болгова; ВГУИТ, Кафедра технологии жиров, процессов и аппаратов химических и пищевых производств. - Воронеж : ВГУИТ, 2016. - 83 с. Режим доступа: http://biblos.vsuet.ru/ProtectedView/Book/ViewBook/1702

Материалы педагогической диагностики по дисциплине «Процессы и аппараты» [Текст] : учебное пособие / А. Н. Остриков, И.Н. Болгова, И.С. Наумченко [и др.]; Воронеж. Гос. Ун-т инж. Технол. - Воронеж, 2019. - 340 с. - Режим доступа: http://biblos.vsuet.ru/ProtectedView/Book/ViewBook/4795

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Наименование ресурса сети «Интернет»	Электронный адрес ресурса
«Российское образование» - федеральный портал	https://www.edu.ru/
Научная электронная библиотека	https://elibrary.ru/defaultx.asp?
Национальная исследовательская компьютерная	https://niks.su/
сеть России	

Информационная система «Единое окно доступа	http://window.edu.ru/
к образовательным ресурсам»	
Электронная библиотека ВГУИТ	http://biblos.vsuet.ru/megapro/web
Сайт Министерства науки и высшего образова-	https://minobrnauki.gov.ru/
ния РФ	
Портал открытого on-line образования	https://npoed.ru/
Электронная информационно-образовательная	https://education.vsuet.ru/
среда ФГБОУ ВО «ВГУИТ	

6.5 Методические указания для обучающихся по освоению дисциплины

Технологические процессы и производства [Электронный ресурс]: метод. указания к СРО по курсу «Технологические процессы и производства» для обучающихся по направлению 15.03.04 — «Автоматизация технологических процессов и производств» / Воронеж. гос. ун-т инж. технол.; сост. А.В. Горбатова. - Воронеж: ВГУИТ, 2016. — 24 с.-[ЭИ]. Режим доступа: https://education.vsuet.ru/mod/folder/view.php?id=64281

Технологические процессы и производства. Методические указания и задания по выполнению кейс-заданий для студентов очной формы обучения / И.Н. Болгова; Воронеж. гос. ун-т инж. технол. - Воронеж: ВГУИТ, 2017. - 50 с. Режим доступа: https://education.vsuet.ru/mod/folder/view.php?id=64281

Порядок изучения курса:

- Объем трудоемкости дисциплины 5 зачетных единиц (180 ч.);
- Виды учебной работы и последовательность их выполнения:
- аудиторная: лекции, лабораторные занятия посещение в соответствии с учебным расписанием;
- самостоятельная работа: изучение теоретического материалы для сдачи тестовых заданий, решения кейс-задания, подготовка и защита лабораторных работ;
- График контроля текущей успеваемости обучающихся рейтинговая оценка:
- Состав изученного материала для каждой рубежной точки контроля тестирование, лабораторная работа;
- Учебно-методическое и информационное обеспечение дисциплины: рекомендуемая литература, методические разработки, перечень ресурсов информационноттелекоммуникационной сети «Интернет»;
- Заполнение рейтинговой системы текущего контроля процесса обучения дисциплины контролируется на сайте <u>www.vsuet.ru</u>;
- Допуск к сдаче зачета при выполнении графика контроля текущей успеваемости;
- Прохождение промежуточной аттестации зачет (собеседование и/или тестирование и/или кейс-задания).

6.6 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Используемые виды информационных технологий:

- «электронная»: персональный компьютер и информационно-поисковые (справочно-правовые) системы;
- «компьютерная» технология: персональный компьютер с программными продуктами разного назначения (OC Windows; MSOffice; КОМПАС-График; Labview виртуальная среда для снятия характеристик гидравлических машин; Daemon Tools оболочка для выполнения виртуальных лабораторных работ);
 - «сетевая»: локальная сеть университета и глобальная сеть Internet;

При освоении дисциплины используется лицензионное и открытое программное обеспечение:

Microsoft Windows XP Microsoft Open License Academic OPEN No Level #44822753 om 17.11.2008 a.; Microsoft Office Professional Plus 2007 Russian Academic OPEN No Level #44822753 om 17.11.2008 a.;

AdobeReaderXI (бесплатное ПО) https://acrobat.adobe.com/ru/ru/acrobat/pdf-reader/volume-distribution.html;

Альт Образование 8.2 + LibreOffice 6.2+Maxima Лицензия № AAA.0217.00 с 21.12.2017 г. по «Бессрочно»; Microsoft Windows Server Standart 2008 Russian Academic OPEN 1 License No Level #45742802 om 29.07.2009 г. http://eopen.microsoft.com;

Microsoft Office Professional Plus 2010 Microsoft Open License Microsoft Office Professional Plus 2010 Russian Academic OPEN 1 License No Level #48516271 om 17.05.2011 a. http://eopen.microsoft.com.

При освоении дисциплины используются информационные справочные системы:

- Сетевая локальная БД Справочная Правовая Система КонсультантПлюс для 50 пользователей, ООО «Консультант-Эксперт» Договор № 200016222100052 от 19.11.2021 (срок действия с 01.01.2022 по 31.01.2023);
- БД «ПОЛПРЕД Справочники» <u>http://www.polpred.com</u>, неограниченный доступ, ООО «ПОЛПРЕД Справочники» Соглашение № 128 от 12.04.2017 (скан-копия), (срок действия с 12.04.2017 до 15.10.2022);
- Электронная версия журнала «ЛИН-технологии: бережливое производство». https://panor.ru/ ООО Издательский дом «ПАНОРАМА» Договор на электронную версию журнала № 751/782 от 30.11.2021 (срок действия с 01.01.2022 по 31.12.2022).

7 Материально-техническое обеспечение дисциплины

Ауд. 111. Учебная аудитория для проведения занятий лекционного типа, лабораторных и практических занятий, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (для всех направлений и специальностей): Лабораторные установки: абсорбция углекислого газа водой, гидродинамика зернистого слоя, осаждение, витание и унос твердой частицы в жидкой среде, осаждение твердых частиц в жидкой среде, кинетика конвективной сушки, гидродинамика колпачковой тарелки, определение констант процесса фильтрования, барабанный вакуум-фильтр, простая перегонка, теплообменник типа «труба в трубе», стенд колонных аппаратов.

Ауд. 115. Учебная аудитория для проведения занятий лекционного типа, лабораторных и практических занятий, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (для всех направлений и специальностей): Лабораторные установки: изучение режимов движения жидкости, относительный покой жидкости во вращающемся вокруг цилиндрической оси цилиндрическом сосуде, испытание вакуум-насоса, испытание центробежного вентилятора, испытание центробежновихревого насоса, нормальные испытание центробежного насоса, стенд Бернулли, учебно-наглядные пособия по тематическим разделам. Учебно-лабораторные комплексы: исследование гидродинамики жидкости, исследование параметров работы насосов.

Ауд. 117. Учебная аудитория для проведения занятий лекционного типа, лабораторных и практических занятий, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (для всех направлений и специальностей): Макет вакуум-выпарной установки с выносной греющей камерой, макет массообменного аппарата, стенды: трехкорпусная вакуум-выпарная установка, ректификационная установка непрерывного действия, основные виды фильтровальных материалов, используемые виды насадок в массообменных аппаратах, различные виды контактных устройств массообменных аппаратов.

Ауд. 113. Помещение (Учебная аудитория) для самостоятельной работы обучающихся: Учебно-наглядные пособия по курсовому проектированию, компьютеры: Celeron 2.8 ГГц, Intel Celeron-120, Pent-5-200. Мониторы: Samttron 56e, LCD TFT Samsung, ASUS VW193D BK.

8 Оценочные материалы для промежуточной аттестации обучающихся по дисциплине

- 8.1 Оценочные материалы (ОМ) для дисциплины включают:
- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.
- 8.2 Для каждого результата обучения по дисциплине определяются показатели и критерии оценивания сформированности компетенций на различных этапах их формирования, шкалы и процедуры оценивания.

ОМ представляются отдельным комплектом и входят в состав рабочей программы дисциплины.

Оценочные материалы формируются в соответствии с П ВГУИТ «Положение об оценочных материалах».

Документ составлен в соответствии с требованиями ФГОС ВО по направлению 15.03.04 - Автоматизация технологических процессов и производств и профилю подготовки Автоматизация технологических процессов и производств в пищевой и химической промышленности.

ПРИЛОЖЕНИЕ к рабочей программе

1. Организационно-методические данные дисциплины для заочной формы обучения

1.1 Объемы различных форм учебной работы и виды контроля в соответствии с учебным планом

Виды работ	Всего часов	Сем	иестр
		6	7
	акад.	акад.	акад.
Общая трудоемкость дисциплины	180	72	108
Контактная работа, в т.ч. аудиторные занятия:	29,6	13,8	15,8
Лекции	12	6	6
Лабораторные работы (ЛР)	14	6	8
Консультации текущие	1,8	0,9	0,9
Рецензирование контрольных работ обучающихся - заоч-	1,6	0,8	0,8
ников			
Виды аттестации (зачет/зачет)	0,2	0,1	0,1
Самостоятельная работа:	142,6	54,3	88,3
Контрольные работы	18,4/2	9,2/1	9,2/1
Проработка материалов по конспекту лекций (собеседова-	12	6	6
ние, тестирование, решение кейс-заданий)			
Проработка материалов по учебнику (собеседование, тес-	84,2	36,3	57,1
тирование, решение кейс-заданий)			
Подготовка к защите лабораторных работ (собеседование,	28	12	16
тестирование, решение кейс-заданий)			
Подготовка к зачету (контроль)	7,8	3,9	3,9

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

по дисциплине

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ И ПРОИЗВОДСТВА

1 Перечень компетенций с указанием этапов их формирования

	1 Перечень компетенции с указанием этапов их формирования Перечень компетенций Этапы формирования компетенций						
	Код	Содержание компе-	В результате изучения учебной дисциплины обучающийся				
Nº	компе-	тенции (результат	в результате изучения учеоной дисциплины обучающийся должен:				
п/п		освоения)		должен.			
11/11	петен- тен-	освоения)	знать	VMOTE	рпалеть		
	ции		знать	уметь	владеть		
1	ОПК-1	способность исполь-	основные законо-	использовать ос-	способностью исполь-		
		зовать основные зако-	мерности, дейст-	новные законо-	зовать основные зако-		
		номерности, дейст-	вующие в процессе	мерности, дейст-	номерности, дейст-		
		вующие в процессе	изготовления про-	вующие в процес-	вующие в процессе		
		изготовления продук-	дукции требуемого	се изготовления	изготовления продук-		
		ции требуемого каче-	качества, заданного	продукции тре-	ции требуемого каче-		
		ства, заданного коли-	количества	буемого качества,	ства, заданного коли-		
		чества при наимень-		заданного коли-	чества при реализации		
		ших затратах общест-		чества при реали-	технологических про-		
		венного труда		зации технологи-	цессов		
				ческих процессов			
2	ПК-3	готовность применять	технологические	проводить техно-	современными мето-		
		способы рационально-	процессы и произ-	логические про-	дами разработки ма-		
		го использования	водства, современ-	цессы, разраба-	лоотходных, энерго-		
		сырьевых, энергетиче-	ные методы разра-	тывать малоот-	сберегающих и эколо-		
		ских и других видов	ботки малоотходных,	ходные, энерго-	гичных технологий при		
		ресурсов, современ-	энергосберегающих	сберегающие и	реализации техноло-		
		ные методы разработ-	и экологичных тех-	экологичные тех-	гических процессов		
		ки малоотходных, энергосберегающих и	нологий	НОЛОГИИ	соответствующих про-		
		экологически чистых			изводств		
		технологий, средства					
		автоматизации техно-					
		логических процессов					
		и производств					
3	ПК-31	способность выявлять	причины появления	выявить брак	способами выявления		
		причины появления	брака продукции и	продукции и раз-	и устранения брака		
		брака продукции, раз-	состав мероприятий	работать меро-	продукции, контроля		
		рабатывать меро-	по его устранению,	приятия по его	соблюдения техноло-		
		приятия по его устра-	технологическую	устранению, ор-	гической дисциплины		
		нению, контролиро-	дисциплину	ганизовать меро-	на рабочих местах		
		вать соблюдение тех-		приятия для кон-			
		нологической дисцип-		троля технологи-			
		лины на рабочих мес-		ческой дисципли- ны на рабочих			
		тах		ны на рабочих местах			
4	ПК-32	способность участво-	технологические	оценивать интен-	методикой корректи-		
'	02	вать во внедрении и	процессы, основные	сивность техноло-	ровки технологических		
		корректировке техно-	показатели их интен-	гических процес-	процессов при подго-		
		логических процессов,	сивности, принципы	сов, конкуренто-	товке производства		
		средств и систем	оценки конкуренто-	способность но-	новой продукции и		
		автоматизации,	способности продук-	вой продукции	оценке ее конкуренто-		
		управления, контро-	ции		способности		
		ля, диагностики при					
		подготовке производ-					
		ства новой продук-					
		ции и оценке ее конку-					
		рентоспособности					

2 Паспорт фонда оценочных материалов по дисциплине

Nº	Разделы	Индекс	Оценочнь	е средства	Технология/процедура
п/ п	дисциплины	контроли- руемой компетен- ции (или ее части)	наименование	№№ заданий	оценивания (способ контроля)
1	Введение	ОПК-1 ПК-32	Тест (Банк тестовых заданий)	2,9,26,204,210,211	Бланочное или компь- ютерное тестирование
			Собеседование (вопросы к заче- ту)	214-217,360	Контроль преподава- телем
2	Современные методы разработки малоотходных, энергосберегающих и экологически чистых технологий	ПК-3	Собеседование (вопросы к заче- my)		Контроль преподава- телем
3	Гидравличе- ские процес- сы транспор- тирования технологиче-	ОПК-1 ПК-3 ПК-31 ПК-32	Тест (Банк тестовых заданий)	1,3-8,10-11,24-25,32,34,35,43- 50,64-65,78-81,91,92,94- 95,103,104,112-115,143-144,154- 155,157,162,163,168-172,191- 193,205-206,208,209,212	Бланочное или компь- ютерное тестирование
	ских сред		Собеседование (вопросы к заче- ту)	218,272,312-313,361-362	Контроль преподава- телем
			Лабораторные работы (собесе- дование) (вопросы к защите ла- бораторных работ)	246-256,288-299,337-345,376-386	Защита лабораторных работ
			Кейс-задание	410,411	Контроль преподава- телем
4	Гидромеха- нические процессы и	ПК-3 и ПК-31 а- ПК-32 их	Тест (Банк тестовых заданий)	12-20,27-29,36-40,51-56,66-72,82- 86,93,105,106,116-129,145- 147,158-161,173-183,194,195,207	Бланочное или компь- ютерное тестирование
ние	оборудова- ние для их		Собеседование (вопросы к заче- ту)	219-226,273-275,314-320,363-367	Контроль преподава- телем
	реализации				Лабораторные работы (собесе- дование) (вопросы к защите ла- бораторных работ)
			Кейс-задание	405,412,413,417-420,424-427	Контроль преподава- телем
5	Тепловые процессы и	ОПК-1 ПК-3	Тест (Банк тестовых заданий)	33,57-58,73,87-88,130-139,148- 149,164,165,184-189,196-197,213	Бланочное или компь- ютерное тестирование
	аппараты	ПК-31 ПК-32	Собеседование (вопросы к заче- ту)	227-232,276-279,321-324,368	Контроль преподава- телем
			Лабораторные работы (собесе- дование) (вопросы к защите ла- бораторных работ)	262,305,351-352,395-396	Защита лабораторных работ
			Кейс-задание	406,414-415,421,428	Контроль преподава- телем
6	Массообмен- ные процессы и аппараты	ОПК-1 ПК-3 ПК-31 ПК-32	Тест (Банк тестовых заданий)	21-23,30-31,41-42,59-63,74-77,89- 90,96-102,107-11,140-142,151- 153,156,166,167,190,198-203	Бланочное или компьютерное тестирование
		+-	Собеседование (вопросы к заче- ту)	233-245,280-287,325-336,369-375	Контроль преподава- телем
			Лабораторные работы (собесе- дование) (вопросы к защите ла- бораторных работ)	263-266,306-311,353-359,397-404	Защита лабораторных работ
			Кейс-задание	407-409, 416, 422, 423, 429, 430	Контроль преподава- телем

3 Оценочные материалы для промежуточной аттестации

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Аттестация обучающегося по дисциплине проводится в форме тестирования, и предусматривает возможность последующего собеседования (зачета).

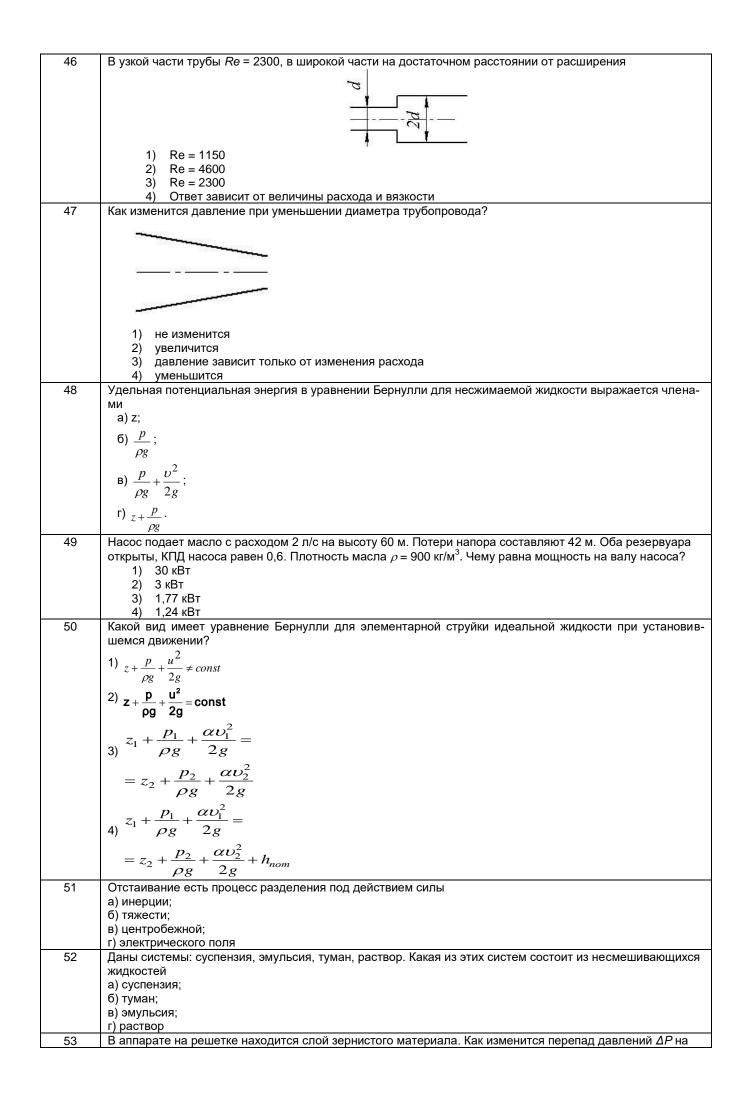
Каждый вариант теста включает 20 контрольных заданий, из них:

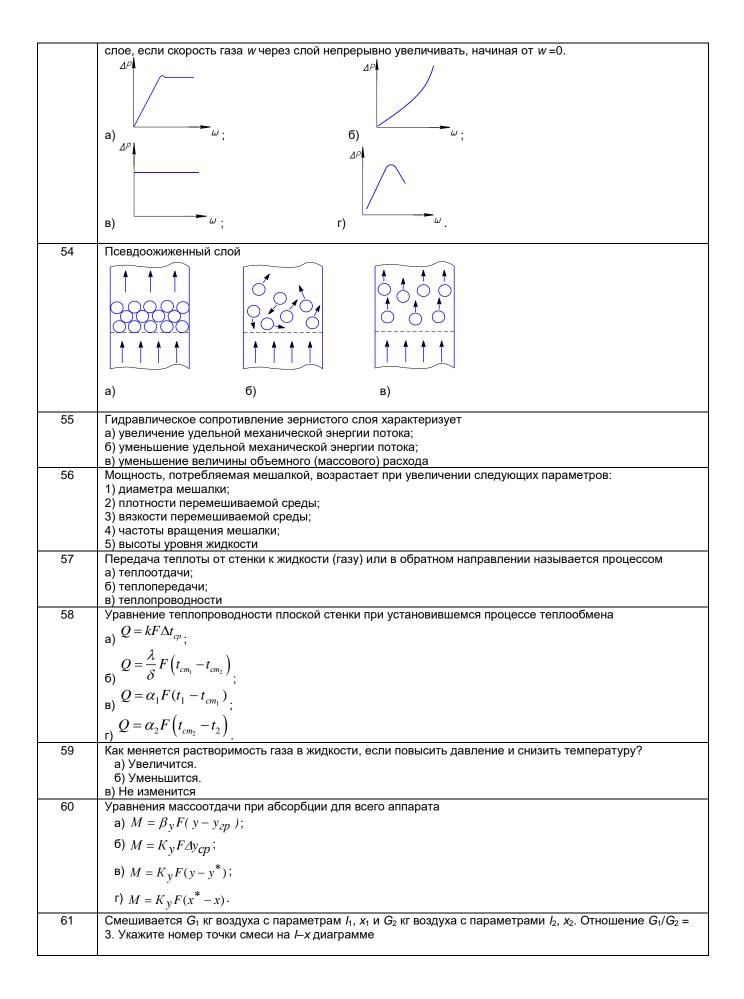
- 8 контрольных заданий на проверку знаний;
- 9 контрольных заданий на проверку умений;
- 3 контрольных задания на проверку навыков.

3.1 Тесты (банк тестовых заданий) 3.1.1 ОПК-1- способность использовать основные закономерности, действующие в процессе изготовления продукции требуемого качества, заданного количества при наименьших затратах общественного труда

№ за-	Тестовое задание
дания А (на вы	 бор одного правильного ответа)
A (на вы	Чему равно абсолютное давление в озере на глубине 10 м?
'	1) 19,6·10 ⁴ Πa 2) 9,8·10 ⁴ Πa 3) 98 Πa
	4) 9,8 Πa
2	Сущность гипотезы сплошности заключается в том, что жидкость рассматривается как 1) среда, имеющая разрывы и пустоты 2) сложная среда с растворенными газами, веществами, имеющая разрывы и пустоты 3) неподвижное твердое или жидкое тело, при определенной температуре и давлении 4) континуум, непрерывная сплошная среда
3	При равномерном турбулентном движении жидкости в круглой трубе осредненные местные скорости в турбулентном ядре течения распределяются 1) по логарифмическому закону 2) по параболическому закону 3) по закону прямоугольника 4) по закону случайных величин
4	Поверхности равного давления в покоящейся жидкости 1) параллельны дну сосуда 2) нормальны к стенкам сосуда 3) располагаются произвольно 4) параллельны горизонтальной плоскости
5	Какой закон механики выражает уравнение Бернулли? 1) Закон сохранения количества движения 2) Второй закон Ньютона 3) Закон сохранения энергии 4) Закон сохранения материи
6	Потери напора по длине пропорциональны квадрату средней скорости движения жидкости 1) всегда 2) при ламинарном режиме 3) во II-ой зоне сопротивления (гладкостенного сопротивления) 4) в IV зоне сопротивления (развитого турбулентного течения)
7	Абсолютное давление в точке A , где $ ho-$ плотность воды, $p_{ ho}$ – атмосферное давление, $M-$ показание
	манометра, равно: 1) $p = M + \rho g h_1$ 2) $p = M + p_o + \rho g (h_2 - h_1)$ 3) $\mathbf{p} = \mathbf{M} + \mathbf{p_0} + \rho g \mathbf{h_1}$
	4) $p = p_o + \rho g h_1$
8	Удельная потенциальная энергия в уравнении Бернулли для несжимаемой жидкости выражается членами a) z; 6) $\frac{p}{\rho g}$; B) $\frac{p}{\rho g} + \frac{v^2}{2g}$; г) $z + \frac{p}{\rho g}$.
9	Текучестью жидкости называют а) свойство жидкостей, означающее способность перемещаться без влияния сдвигающих сил; б) общее свойство для всех жидкостей, означающее способность течь под влиянием самых малых

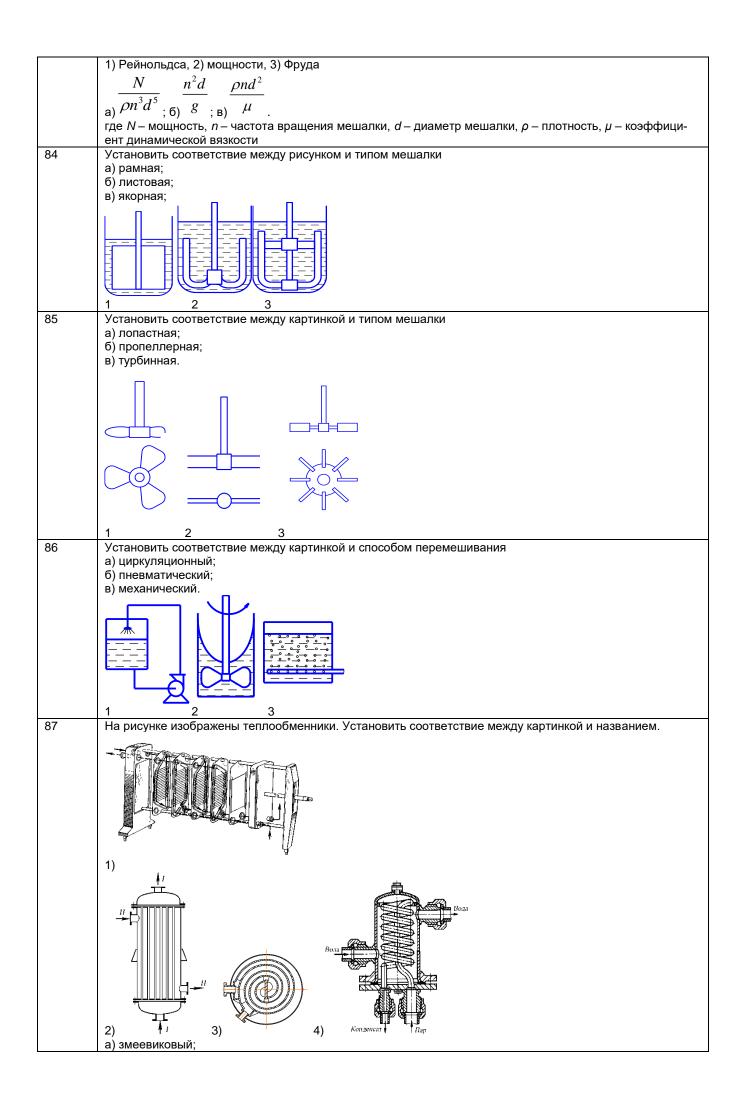
	сдвигающих усилий;
	в) общее свойство для всех жидкостей, означающее способность течь под влиянием изменения по-
	верхностного натяжения;
	г) особое свойство для некоторых жидкостей, означающее способность течь под влиянием сдвигающих
	сил.
10	Особенностью ньютоновских жидкостей является то, что для них
	а) вязкость не зависит от температуры и давления;
	б) справедлив закон внутреннего трения Ньютона;
	в) модуль упругости не изменяется с увеличением температуры;
	г) несправедлив закон внутреннего трения Ньютона.
11	При равномерном турбулентном движении жидкости в круглой трубе осредненные местные скорости в
	турбулентном ядре течения распределяются:
	а) по логарифмическому закону;
	б) по параболическому закону;
	в) по закону прямоугольника;
	г) по закону случайных величин.
12	Соотношение между критерием Рейнольдса и Архимеда при ламинарном режиме осаждения:
12	
	$Re = \frac{Ar}{18} ;$
	a) 18 :
	, 0.75
	6) $Re = 0.152Ar^{0.75}$;
	$_{B)}Re = 1.74\sqrt{Ar}$:
	$(B)^{Re=1,/4\sqrt{Ar}}$;
	г) верный ответ не указан.
13	Скорость осаждения при ламинарном режиме рассчитывается по формуле:
	$a) \in \frac{pw}{w}$:
	a) $\xi \frac{\pi d^2}{4} \cdot \frac{\rho w^2}{2}$;
	6) $\frac{gd^3(\rho_m-\rho)\rho}{\mu^2}$;
	μ^2
	B) $\frac{gd^2(\rho_m - \rho)}{18\mu};$ $r) \sqrt{\frac{4(\rho_m - \rho)gd}{3\xi\rho}}.$
	B) $gd^{-}(\rho_m-\rho)$:
	184
	10µ
	Γ $4(\rho_m - \rho)gd$
	$\sqrt{3\xi\rho}$
14	Гидравлический коэффициент трения для зернистых слоев в режиме фильтрования рассчитывают по
14	т идравлический коэффициент трения для зернистых слоев в режиме фильтрования рассчитывают по формуле
	$(a) \frac{V_{cs}}{V_{cs}};$
	$V_{ms} + V_{cs}$,
	6) $\frac{4\varepsilon}{a}$;
	$\frac{a}{a}$
	.133
	B) $\frac{133}{\text{Re}} + 2,3$;
	$\Gamma(w_0 d)/\varepsilon v$.
15	Действительная <i>w</i> и фиктивная <i>w</i> ₀ скорости в зернистом слое связаны соотношением
	a) $w = \frac{w_0}{\varepsilon}$;
	\mathcal{E}
	6) $w = w_0 \cdot \varepsilon$;
I	$V_0 = V_0 \cdot C$,
1	
	$\mathbf{B}) \ w = w_{O}$
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя,
16	$\mathbf{B}) \ w = w_{O}$
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя,
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где I – высота зернистого слоя;
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где I – высота зернистого слоя; d_3 – эквивалентный диаметр каналов; w – скорость;
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где I – высота зернистого слоя; d_3 – эквивалентный диаметр каналов; w – скорость; λ – коэффициент сопротивления;
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где I – высота зернистого слоя; d_3 – эквивалентный диаметр каналов; w – скорость; λ – коэффициент сопротивления; ρ – плотность.
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где I – высота зернистого слоя; d_3 – эквивалентный диаметр каналов; w – скорость; λ – коэффициент сопротивления; ρ – плотность.
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где I – высота зернистого слоя; d_3 – эквивалентный диаметр каналов; w – скорость; λ – коэффициент сопротивления;
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где I – высота зернистого слоя; d_3 – эквивалентный диаметр каналов; w – скорость; λ – коэффициент сопротивления; ρ – плотность. а) $\frac{133}{\text{Re}} + 2,3$;
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где I – высота зернистого слоя; d_3 – эквивалентный диаметр каналов; w – скорость; λ – коэффициент сопротивления; ρ – плотность. а) $\frac{133}{\text{Re}} + 2,3$;
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где I – высота зернистого слоя; d_3 – эквивалентный диаметр каналов; w – скорость; λ – коэффициент сопротивления; ρ – плотность.
16	в) $w=w_{o}$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где $I-$ высота зернистого слоя; $d_{s}-$ эквивалентный диаметр каналов; $w-$ скорость; $\lambda-$ коэффициент сопротивления; $\rho-$ плотность. а) $\frac{133}{\mathrm{Re}}+2,3$; б) $\lambda \frac{l}{d_{s}} \frac{\rho w^{2}}{2}$;
16	в) $w=w_{o}$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где $I-$ высота зернистого слоя; $d_{s}-$ эквивалентный диаметр каналов; $w-$ скорость; $\lambda-$ коэффициент сопротивления; $\rho-$ плотность. а) $\frac{133}{\mathrm{Re}}+2,3$; б) $\lambda \frac{l}{d_{s}} \frac{\rho w^{2}}{2}$;
16	в) $w = w_0$ Уравнение для гидравлического сопротивления неподвижного зернистого слоя, где I – высота зернистого слоя; d_3 – эквивалентный диаметр каналов; w – скорость; λ – коэффициент сопротивления; ρ – плотность. а) $\frac{133}{\text{Re}} + 2,3$;

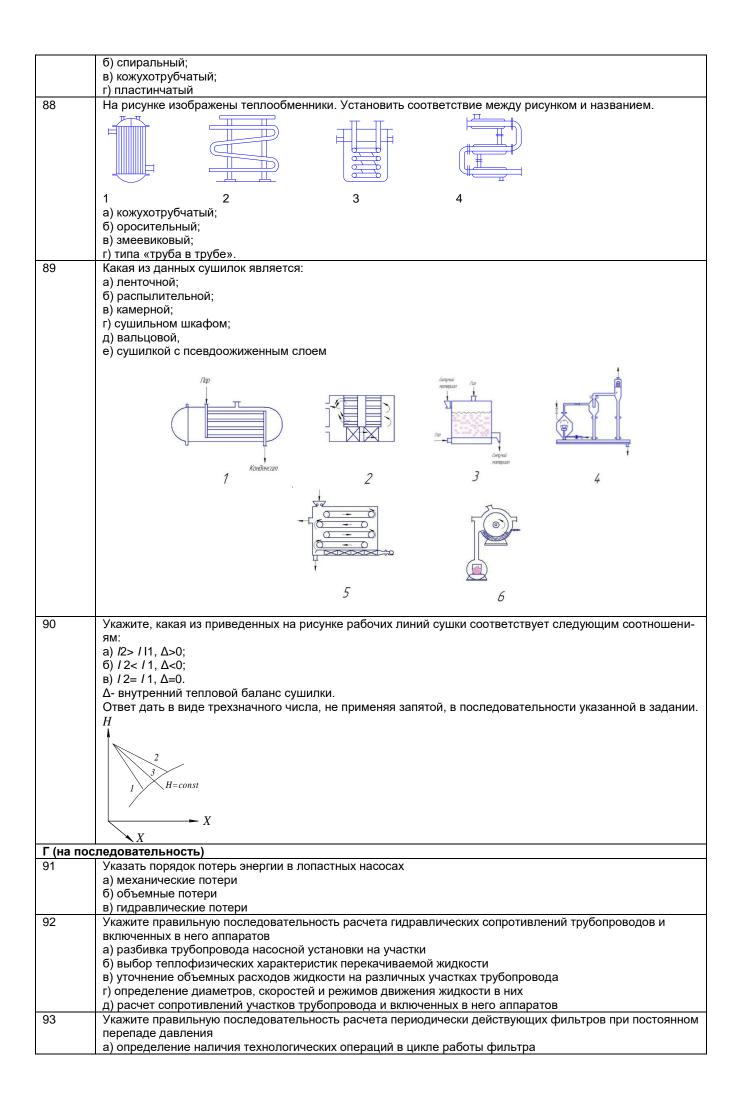

	$l \rho w$
	Γ) $\lambda \frac{l}{d_0} \frac{\rho w}{2}$.
17	3
17	Правильная запись основного дифференциального уравнения фильтрования, если
	ΔP — разность давлений, $R_{\rm oc},R_{\rm op}$ — сопротивления осадка и фильтровальной перегородки,
	_ ∧ _{ос} , ∧ _ф – сопротивления осадка и фильтровальной перегородки, <i>V</i> – объем фильтрата,
	S – площадь поверхности фильтрования,
	т – продолжительности фильтрования.
	a) $\Delta P = \mu \left(R_{oc} + R_{\phi} \right) \frac{dV}{d\tau};$ 6) $\frac{dV}{Sd\tau} = \frac{\Delta P}{\mu \left(R_{oc} - R_{\phi} \right)}$
	$a\tau \qquad Sa\tau \mu(R_{oc}-R_{\phi})$
	$dV = \Delta P = dV = \Delta P$
	$\frac{dV}{dt} = \frac{\Delta t}{\sqrt{r_0 - r_0}}$ $\frac{dV}{dt} = \frac{\Delta t}{\sqrt{r_0 - r_0}}$
	$\left[egin{array}{c} rac{dV}{d au} = rac{\Delta P}{\mu \left(R_{oc} + R_{\phi} ight)} \ ; \end{array} ight] rac{dV}{Sd au} = rac{\Delta P}{\mu \left(R_{oc} + R_{\phi} ight)} \ .$
18	Критерий Рейнольдса для процессов перемешивания равен:
10	
	(a) $K_N \rho n^3 d^5$; (b) $\frac{\rho n a}{r}$; (c) $\frac{\Delta p}{r}$.
	a) $K_N \rho n^3 d^5$; b) $\frac{\rho n d^2}{\mu}$; b) $\frac{\Delta p}{\rho (nd)^2}$; r) $\frac{nd}{g}$.
19	Мощность, потребляемую мешалкой при установившемся режиме, рассчитывают по формуле:
	1) $\frac{\rho n d^2}{r}$; 2) $K_N \cdot \rho n^3 d^3$; 3) $\frac{K_N \cdot \rho n \cdot u}{r}$.
	μ η
20	1) $\frac{\rho n d^2}{\mu}$; 2) $K_N \cdot \rho n^3 d^5$; 3) $\frac{K_N \cdot \rho n^3 d^5}{\eta}$. Какой вид имеет обобщенное уравнение гидродинамики для процессов перемешивания:
	a) $K_N = A' Re_M^m Fr_M^n \Gamma_1^\rho, \Gamma_2^q, \dots$
	$a_i = a_i + a_i $
	$6) F_{\mu} = \frac{N}{N}$
	6) $Eu_{M} = \frac{N}{on^{3}d^{5}}$;
	ph u
	$B) n = Re_{_{\mathcal{M}}} \mu / (d^{2} \rho);$
	$r) Re_{M} = C_{1}Ar \left(\frac{d_{N}}{d}\right)^{0.5} \left(\frac{D}{d}\right)^{k}$
	$\begin{pmatrix} 1 & Re_{M} & C_{1} & Re_{M} \end{pmatrix} \begin{pmatrix} d \end{pmatrix} \begin{pmatrix} d \end{pmatrix}$
21	Укажите правильную запись числа единиц переноса массы при абсорбции
	a) $K_v F \Delta Y_{cp}$;
	7 7
	$6) \frac{\Delta y_{\delta} - \Delta y_{M}}{2,3 \lg \frac{\Delta y_{\delta}}{\Delta y}};$
	$\int_{23I_0}^{3} \Delta y_{\delta}$,
	$\frac{2,3ig}{\Delta y_M}$
	B) $\frac{y_H - y_K}{\Delta y_{cp}}$;
	Δy_{cp}
	Γ) $G(y_H - y_K)$.
22	
22	Что является движущей силой процесса абсорбции? а) Разность между равновесными концентрациями распределяемого вещества в контактирующих фа-
	а) газность между равновесными концентрациями распределяемого вещества в контактирующих фа- зах.
	б) Разность между концентрациями в ядре потока и на границе раздела фаз.
	в) Разность между рабочей и равновесной концентрациями в одной из контактирующих фаз.
	г) Разность между рабочими концентрациями распределяемого вещества в контактирующих фазах
23	Состав пара, удаляющегося из ректификационной колонны в дефлегматор, равен составу
	а) кубового остатка;
	б) исходной смеси;
E /uc =: :	В) дистиллята.
Б (на вы	бор нескольких правильных)
24	Требуемый напор насоса определяется 1) геометрической высотой подъема жидкости;
	т) теометрической высотой подъема жидкости, 2) разностью давлений в напорной и приемной емкостях;
	3) потерями напора в сети;
	4) высотой всасывания;
	5) КПД насоса.
25	Насос для работы на сеть подбирают по
	1) заданной подаче;
	2) требуемому напору;
	3) полезной мощности;
D (4) максимальному КПД.
	тветствие)
26	Единицы измерения А) Объемного расхода 1) м ³ /с
1	г Ал Оорымпого рабхода — — Т.) М. /С


	Б) Массового расхода	2) кг/с	
	В) Динамической вязкости жидкости	3) Па·с	
	Г) кинематической вязкости	4) м²/с	
	Д) числа Рейнольдса	5) безразмерное	
27	Установите соответствие формулы для ра	асчета коэффициента ме	естного сопротивления и диапазоном
	чисел Рейнольдса:	• • •	•
	1) $\xi = \frac{24}{Re}$		
	2) $\xi = 0.44$		
	3) $\xi = \frac{18.5}{Re^{0.6}}$		
	$\zeta = \frac{1}{Re^{0.6}}$		
	a) Re<2;		
	б) <i>Re</i> >500;		
	в) 2< <i>Re</i> <500.		
28	Установить соответствие между формуло	ппа расчета скорости с	осэмпения и ремимом примения
20		и для расчета скорости с	осаждения и режимом движения.
	1) $w_{oc} = \frac{gd^2(\rho_m - \rho)}{18 \cdot \mu}$;		
	$18 \cdot \mu$		
	10.43		
	2) $w_{oc} = 0.78 \frac{d^{0.43} (\rho_m - \rho)^{0.75}}{\rho^{0.285} \cdot \mu^{0.43}};$		
	$0.285 \cdot \mu^{0.43}$		
	3) $w_{oc} = 5.46 \sqrt{\frac{d(\rho_m - \rho)}{\rho}}$.		
	3) $w_{oc} = 5.46 \sqrt{\frac{m}{c}}$.		
	,		
	а – ламинарный режим;		
	б – переходная область;		
	в – турбулентный режим.		
29	Какие из следующих критериев являются	критериями:	
	1) Рейнольдса, 2) мощности, 3) Фруда		
	a) $\frac{N}{\rho n^3 d^5}$; б) $\frac{n^2 d}{g}$; в) $\frac{\rho n d^2}{\mu}$. На диаграмме <i>у-х</i> изображены три линии,		
	$(a) \frac{1}{2} $		
	$pn a g \mu$		
30	На диаграмме у-х изображены три линии,	характеризующие проце	есс абсорбции: рабочая, равновесная и
	кинетическая. Установите соответствие м	эжду названием и номер	оом линии.
	y = 1, 2, 3		
	^y		
	- x		
31	Установите соответствие между диаграмм		
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при		рответствует б) Диаграмма процесса абсорб-
31	Установите соответствие между диаграмм		
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.		
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
31	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме.	
	Установите соответствие между диаграмма а) Диаграмма процесса абсорбции при при ции при противоточной схеме. 1 у	ямоточной схеме.	
Г (на пос	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме. 1 у	ямоточной схеме. 2 $y = f(x)$ $y * = f(x)$ $y * = f(x)$	б) Диаграмма процесса абсорб-
	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме. 2 $y = f(x)$ $y * = f(x)$ $y * = f(x)$	б) Диаграмма процесса абсорб-
Г (на пос	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме.	ямоточной схеме. 2 $y=f(x)$ $y^*=f(x)$ х определения коэффици	б) Диаграмма процесса абсорб-
Г (на пос	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме. 1 У *=f(x) У *=f(x) У *=f(x) Укажите правильную последовательность турбулентном режиме а) определение λ для гидравлически глади	ямоточной схеме. 2 $y=f(x)$ $y^*=f(x)$ у определения коэффици	б) Диаграмма процесса абсорб-
Г (на пос	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме. 1 У *=f(x) У *=f(x) У *=f(x) Укажите правильную последовательность турбулентном режиме а) определение \(\lambda \) для гидравлически глады б) определение толщины вязкого подслоя	ямоточной схеме. 2 $y=f(x)$ $y = f(x)$ у *= $f(x)$ х определения коэффици ких труб δ	б) Диаграмма процесса абсорб-
Г (на пос	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме. 1 У *=f(x) У	ямоточной схеме. 2 $y=f(x)$ $y = f(x)$ у *= $f(x)$ х определения коэффици ких труб δ	б) Диаграмма процесса абсорб-
Г (на пос	Установите соответствие между диаграмма а) Диаграмма процесса абсорбции при при ции при противоточной схеме. 1 У *=f(x) У	ямоточной схеме. 2 $y=f(x)$ $y = f(x)$ у *= $f(x)$ х определения коэффици ких труб δ	б) Диаграмма процесса абсорб-
Г (на пос	Установите соответствие между диаграмм а) Диаграмма процесса абсорбции при при ции при противоточной схеме. 1 У *=f(x) У	ямоточной схеме. $y = f(x)$ $y $	б) Диаграмма процесса абсорб-

	а) определение термических сопротивлений загрязнений стенки;
	б) определение коэффициентов теплоотдачи;
	в) определение средних скоростей движения теплоносителя;
	г) расчета коэффициента теплопередачи;
	д) определение критерия Нуссельта;
	е) определение общего термического сопротивления стенки;
	ж) определение режимов движения теплоносителей
Д (откр	рытого типа)
34	Общее свойство для всех жидкостей, означающее способность течь под влиянием самых малых сдвигающих усилий – это(текучесть)
35	Свойство жидкостей оказывать сопротивление относительному сдвигу слоев – это (вязкость)
36	Система, состоящая из жидкой сплошной фазы и твердой дисперсной, - это (суспензия)
37	По формуле
	$g(\rho_m - \rho)(1 - \varepsilon)H = \Delta p$
	рассчитывают сопротивление зернистого слоя в режиме (псевдоожижения)
38	Сопротивление зернистого слоя рассчитывают по формуле
	$\Delta p = \lambda \frac{l}{d_{_{3}}} \frac{\rho \omega^{2}}{2}$ в режиме (фильтрования) Объем свободного пространства между частицами в единице объема, занятого зернистым слоем – это
39	Объем свободного пространства между частицами в единице объема, занятого зернистым слоем – это (порозность)
40	Поверхность элементов, находящихся в единице объема, занятого зернистым слоем – это (удельная поверхность)
41	Число единиц переноса при абсорбции, если $y_{\rm H}=0.02$; $y_{\rm K}=0.01$; $\Delta y_{\rm cp}=0.01$, равно(записать цифрой)(1)
42	Смеси с взаимно растворимыми компонентами в любых соотношениях, подчиняющиеся закону Рауля называются (идеальными)

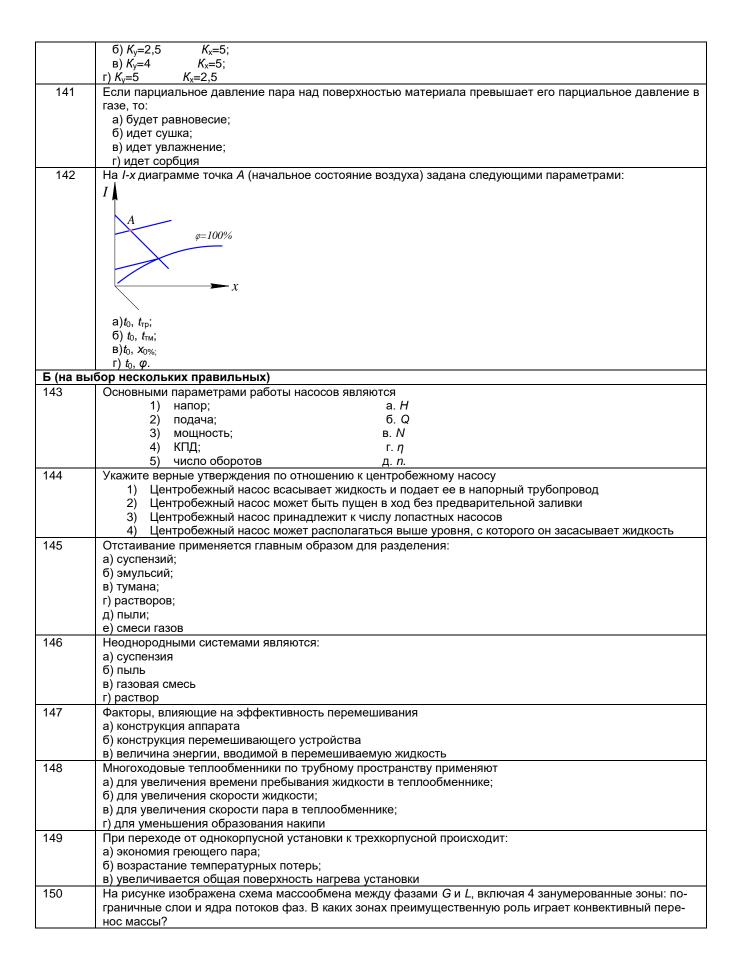
3.1.2 ПК-3 - готовность применять способы рационального использования сырьевых, энергетических и других видов ресурсов, современные методы разработки малоотходных, энергосберегающих и экологически чистых технологий, средства автоматизации технологических процессов и производств

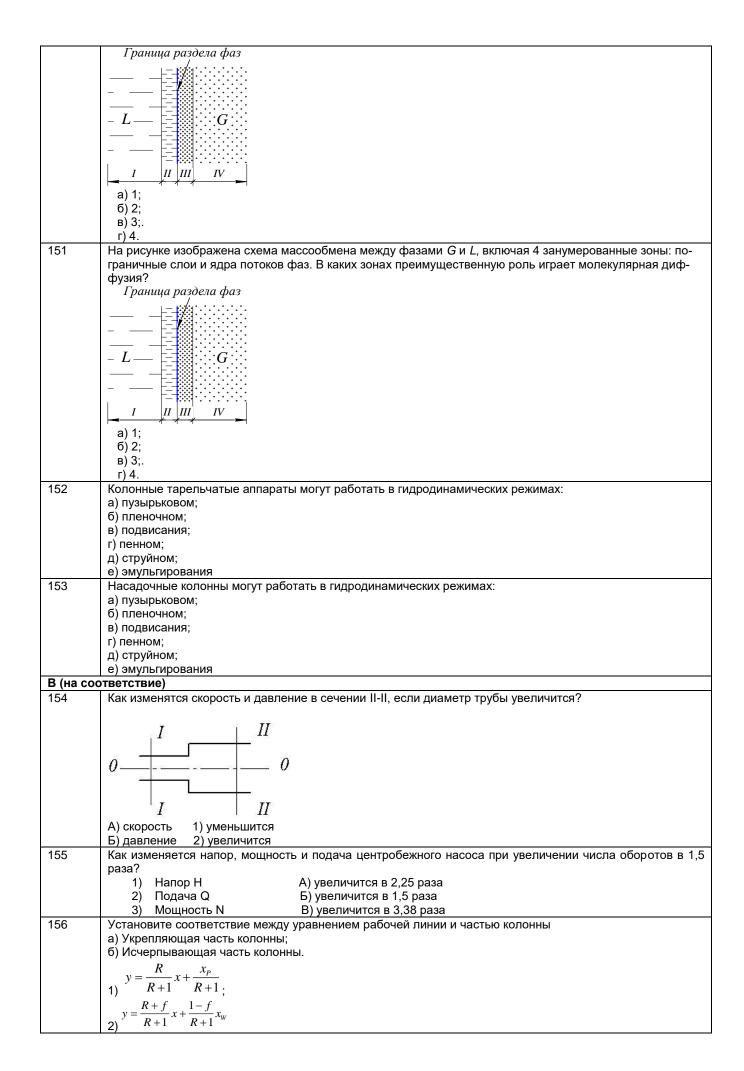

№ за-	Тестовое задание
дания	
43	бор одного правильного ответа) Найти критическую скорость в прямой круглой трубе <i>d</i> = 0,020 м для воздуха, если его динамический ко-
43	
	эффициент вязкости и плотность соответственно равны $\mu = 2 \cdot 10^{-5}$ Па·с, $\rho = 1,2$ кг/м 3 .
	1) 8,3 m/c
	2) 1,9 m/c 3) 3,3 m/c
	4) 2.3 M/c
44	Найти наименьшую скорость в прямой трубе <i>d</i> = 0,020 м для воды, при которой возможен развитый тур-
	булентный режим: $\mu = 1 \cdot 10^{-3}$ Па·с, $ ho = 1000$ кг/м 3
	1) 0,14 m/c
	2) 0,2 m/c
	3) 0,5 m/c
45	4) 50 м/с
45	При экспериментальном исследовании на стенде Бернулли суммарные потери напора трубопровода переменного сечения могут быть определены:
	1) из уравнения Бернулли $h_l = \left[\frac{p_1}{\rho g} + \frac{v_1^2}{2g} \right] - \left[\frac{p_2}{\rho g} + \frac{v_2^2}{2g} \right]$
	2) по разности показаний пьезометров в начале и конце трубопровода
	3) по формуле: $h_l = \lambda \frac{l}{d} \frac{\upsilon^2}{2g}$
	4) по формуле $h_l = \left(\lambda \frac{l}{d} + \sum \xi_{_{M.C.}}\right) \frac{\upsilon^2}{2g}$



	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	б) 2; B) 3; r) 4;
	д) 5.
62	Сушка при непосредственном соприкосновении высушиваемого материала с сушильным агентом называется:
	а) конвективной; б) сублимационной; в) контактной;
63	г) радиационной Первой критической называется влажность, соответствующая:
03	а) концу удаления связанной влаги
	б) концу удаления свободной влаги
	в) точке перегиба на кривой падающей скорости сушки
	г) достижению равновесной влажности на поверхности материала
	ыбор нескольких правильных)
64	Верные утверждения 1) при прикрытии задвижки характеристика трубопровода становится "круче";
	2) при прикрытии задвижки изменяется характеристика насоса;
	3) при прикрытии задвижки рабочая точка смещается влево;
	4) при прикрытии задвижки увеличиваются потери напора в трубопроводе.
65	В жидкости, находящейся в абсолютном покое, действуют силы
	а) сила тяжести
	б) сила инерции
	в) сила давления г) сила трения
66	На частицу, движущуюся в жидкости (газе), действуют силы:
	а) тяжести;
	б) гидравлического сопротивления;
	в) архимедова;
67	г) центробежная Фильтры непрерывного действия
07	а) барабанный вакуум–фильтр,
	б) дисковый вакуум-фильтр,
	в) нутч—фильтр,
	г) рамный фильтр–пресс.
68	Фильтровальные перегородки бывают:
	а) сжимаемые, б) несжимаемые,
	в) поверхностные,
<u></u>	г) глубинные
69	Какие из фильтров являются фильтрами периодического действия:
	а) рамный фильтр–пресс;
	б) барабанный вакуум–фильтр; в) нутч–фильтр;
	г) ленточный вакуум–фильтр
70	Осадки бывают
	а) поверхностные;
	б) глубинные;
	B) CЖИМАЕМЫЕ;
71	г) несжимаемые Мощность, потребляемая мешалкой, зависит от
	1) уровня жидкости в аппарате,
	2) диаметра мешалки,
	3) конструкции мешалки,
	4) наличия отражательных перегородок в сосуде,
	5) плотности перемешиваемой среды, 6) вязкости перемешиваемой среды,
	о) вязкости перемешиваемой среды, 7) частоты вращения мешалки
72	Какие основные способы используются для перемешивания жидких сред:
	1) механический;

	2) пневматический;
	3) перемешивание в трубопроводах;
	4) перемешивание с помощью насосов, 5) перемешивание ультразвуком;
	6) перемешивание гидродинамическим эффектом
73	Основные режимы кипения:
70	а) пленочное;
	б) пузырьковое;
	в) струйное;
	г) объемное
74	Растворимость газа в жидкости увеличивается
	а) со снижением температуры;
	б) со снижением давления;
	в) с повышением давления;
	г) с повышением температуры
75	Основными характеристиками насадки являются:
	а) размеры элемента;
	б) удельная поверхность;
	в) гидравлическое сопротивление;
	г) свободный объем.
76	Какие сушилки наиболее целесообразны для сушки сыпучих материалов?
	Для сушки материалов используют сушилки:
	1) барабанные;
	2) вальцовые;
	3) ленточные;
	4) сублимационные; 5) с кипящим слоем;
	6) радиационные
77	Конвективный процесс сушки можно осуществлять в следующих сушилках:
• •	1) ленточная;
	2) вальцовая;
	3) камерная;
	4) туннельная
В (на со	рответствие)
78	В трубопроводе № 1 происходит движение жидкости при числе <i>Re</i> = 600, в трубопроводе № 2 – при <i>Re</i> =
	75000. Как изменятся потери на трение в каждом из этих трубопроводов, если расход жидкости в них
	увеличится в 2 раза?
	А) в трубопроводе № 1 1) увеличится в 2 раза
	Б) в трубопроводе № 2 2) увеличится в 4 раза
79	Законы пропорциональности для центробежного насоса
	1) Q ~ a. n'
	2) $H \sim 6. n^2$ 3) $N \sim 8. n^3$
00	
80	Коэффициент гидравлического трения λ для гидравлически гладких круглых труб можно рассчитать по
	формуле
	1) при $Re = 4000100000$ A) $\frac{0.3164}{Re^{0.25}}$
	2) при $Re>100000$ Б) $\frac{1}{(1.81gRe-1.5)^2}$
	$(1.81g Re - 1.5)^2$
81	Как изменится напор насоса при уменьшении его подачи:
	1) с помощью задвижки а) увеличится
	2) посредством уменьшения числа оборотов б) уменьшается
82	Установите соответствие для критериев подобия :
	1) критерий Рейнольдса;
	2) критерий Прандтля;
	3) критерий Грасгофа;
	4) критерий Нуссельта.
	$(a)^{V}$ $(b)^{\alpha d}$ $(b)^{W}$ $(c)^{\alpha d}$ $(c)^{\alpha d}$ $(c)^{\alpha d}$ $(d)^{\alpha d}$
	a) $\frac{v}{a}$; b) $\frac{\alpha d}{\lambda}$; b) $\frac{w \cdot d}{v}$; r) $\beta \frac{g \cdot d^3}{v^2} \Delta t$.
	Здесь:
	у – коэффициент кинематической вязкости,
	и – коэффициент кинематической вязкости, а – коэффициент температуропроводности,
	1 =
	λ — коэффициент теплопроводности.
	λ – коэффициент теплопроводности, α – коэффициент теплоотдачи.
	α – коэффициент теплоотдачи,
	α — коэффициент теплоотдачи, β — температурный коэффициент объемного расширения, d — диаметр трубопровода,
	lpha — коэффициент теплоотдачи, eta — температурный коэффициент объемного расширения,
83	α — коэффициент теплоотдачи, β — температурный коэффициент объемного расширения, d — диаметр трубопровода, Δt — разность температур в жидкости,


	6.
	б) определение объема фильтрата за один цикл
	в) определение общего числа циклов в сутки
	г) определение числа циклов работы одного фильтра в сутки
	д) расчет необходимого числа фильтров
	ытого типа)
94	Реальная жидкость отличается от идеальной наличием (вязкости)
95	При движении реальной жидкости «потерянная» механическая энергия переходит в энергию. (тепловую)
96	Целевой компонент всегда переходит в фазу, в которой содержание его равновесной (ниже)
97	В процессе абсорбции хорошо растворимого газа основное (лимитирующее) сопротивление сосредото-
	чено в фазе (газовой)
98	В процессе абсорбции плохо растворимого газа основное (лимитирующее) сопротивление сосредоточено в фазе (жидкой)
99	Летучесть любого компонента идеального раствора равна летучести чистого компонента, умноженной на
100	его мольную долю – это закон (указать фамилию автора) (Рауля)
100	Согласно закону(указать фамилию автора), общее давление пара над раствором равно сумме парциальных давлений его компонентов (Дальтона)
101	Ректификация – это процесс частичного испарения жидкости с последующей кон- денсацией образующихся паров (многократного)
102	Жидкость, возвращаемая в ректификационную колонну для орошения и взаимодействия с поднимаю- щимся паром, - это (флегма)
103	В двух трубах протекает одинаковая жидкость с равным расходом. Диаметр трубы І – 50 мм, диаметр
	трубы II – 100 мм. Укажите соотношение Re_2/Re_1 (где индексы – номера труб)
	$Re_2/Re_1 = $ (2)
104	Пересечение напорной характеристики насоса и напорной характеристики сети – это точ-ка (рабочая)
105	ка (расочая) Порозность зернистого слоя при следующих данных:
103	общий объем слоя – 10 м ³ ,
	объем твердых частиц в слое – 4 м ³ равна
106	При фильтровании разность давлений над осадком и фильтровальной перегородкой – это(движущая сила)
107	Диаграмма соответствует процессу абсорбции при движении фаз
	$y = \varphi(x) A$ $B \qquad y = f(x)$ x
108	На диаграмме, соответствующей процессу абсорбции, линия а – это линия (равновесная)
	y δ a x
109	В первый период сушки удаляется влага (свободная)
110	Уменьшение влажности материала за бесконечно малый промежуток времени называетсясушки (скорость)
111	Зависимость между влажностью материала и временем сушки изображается кривой (суш-
111	Зависимость между влажностью материала и временем сушки изооражается кривои (суш-
	1 100/


3.1.3 ПК-31 - способность выявлять причины появления брака продукции, разрабатывать мероприятия по его устранению, контролировать соблюдение технологической дисциплины на рабочих местах

7001104	ou ou oquini aribi riu puo o rux incomux	
№ за-	Тестовое задание	
дания		
112	Как изменится величина потерь напора в прямой круглой трубе, если расход жидкости увеличить в 2 раза? Режим движения жидкости – турбулентный.	
	1) Увеличится в 2 раза	
	2) Увеличится в 4 раза	
	3) Уменьшится в 2 раза	

	4) Не изменится
113	Скорость в трубе увеличилась в 2 раза, причем режим движения остался ламинарным. Как изменится
110	потеря напора на трение в трубе?
	1) Останется постоянным
	2) Увеличится в 4 раза
	3) Увеличится в 2 раза
	4) Уменьшится в 2 раза
114	По напорной трубе протекает жидкость в условиях турбулентного режима. Местные потери равны 27 м.
	Какую величину составят эти потери, если расход потока уменьшится в 3 раза при сохранении режима
	движения?
	1) 9 M 2) 3 M
	3) Не изменятся
	4) 1 M
115	Когда потери напора по длине трубопровода не будут изменяться при изменении вязкости перекачивае-
	мой жидкости?
	1) При ламинарном режиме течения
	2) При турбулентном режиме течения в гидравлически гадких трубах
	3) При развитом турбулентном режиме течения в шероховатых трубах
116	4) Всегда будут изменяться
116	При движении тела в жидкости возникает сопротивление, которое зависит от а) скорости движения тела:
	а) скорости движения тела; б) режима движения и формы обтекаемого тела;
	в) плотности среды и диаметра частицы;
	г) скорости движения тела, плотности среды и диаметра частицы
117	Увеличение концентрации суспензии при разделении осаждением приводит:
	а) к увеличению скорости осаждения;
	б) к уменьшению скорости осаждения;
	в) не изменяет значения скорости
118	Увеличение площади осаждения ведет к увеличению:
	а) скорости осаждения;
	б) производительности отстойника; в) времени осаждения
119	Сопротивление псевдоожиженного слоя при увеличении скорости газа в 2 раза (слой остается в псевдо-
110	ожиженном состоянии)
	а) остается постоянным;
	б) увеличится в 2 раза;
	в) увеличится в 4 раза;
	г) уменьшится в 2 раза
120	Сопротивление неподвижного зернистого слоя при увеличении скорости жидкости через слой в 3 раза в
	автомодельной области турбулентного режима движения жидкости в зернистом слое а) остается постоянным;
	б) увеличивается в 3 раза;
	в) увеличивается в 9 раз;
	г) уменьшается в 3 раза
121	Сопротивление слоя зернистого материала, находящегося в псевдоожиженном состоянии, при увеличе-
	нии расхода газа через слой
	а) увеличивается;
	б) остается постоянным;
	в) уменьшается; г) верный ответ не указан
122	Высота псевдоожиженного слоя зернистого материала при увеличении расхода газа через слой (до на-
122	чала уноса)
	а) увеличивается;
	б) остается постоянной;
	в) уменьшается;
	г) верный ответ не указан
123	Скорость свободного витания по сравнению со скоростью осаждения частицы
	а) больше;
	б) меньше;
	в) равны; г) правильный ответ не указан
124	Перепад давлений при подаче суспензии на фильтр поршневым насосом постоянной производительно-
1 _ T	СТИ
	а) остается постоянным;
	б) непрерывно растет;
	в) непрерывно уменьшается;
	г) вначале остается постоянным, потом увеличивается
125	Основным технологическим показателем фильтровальных перегородок являются
	а) площадь;
	б) толщина;

	в) задерживающая способность;
400	г) внешний вид
126	Движущая сила процесса фильтрования – это а) разность давлений над слоем осадка и под фильтрующей перегородкой;
	а) разность давлении над слоем осадка и под фильтрующей перегородкой, б) давление над слоем осадка;
	в) давление под фильтрующей перегородкой;
	г) разность между давлением под фильтрующей перегородкой и атмосферным давлением
127	Сопротивление слоя осадка зависит от
	а) высоты осадка, объема фильтрата, удельного сопротивления осадка;
	б) высоты осадка, порозности, удельной поверхности частиц;
	в) вязкости жидкости, порозности и высоты осадка;
	г) высоты осадка, удельного сопротивления осадка
128	Скорость фильтрования (при ΔP = const) по мере увеличения объема фильтрата
	а) уменьшается;
	б) вначале увеличивается, а потом остается постоянной;
	в) увеличивается;
120	г) не зависит от объема фильтрата
129	Какими критериями оценивают эффективность процесса смешивания:
	1) эффективность перемешивающего устройства; 2) интенсивность его действия;
	3) затрачиваемой мощностью;
	4) коэффициентом вариации (неоднородности)
130	Накипь на стенках теплообменного аппарата необходимо удалять, так как
	а) отложение осадка на трубах уменьшает коэффициент теплопередачи;
	б) накипь уменьшает сечение труб и увеличивает гидродинамическое сопротивление движению раство-
	pa;
	в) отложение осадка снижает коэффициент теплоотдачи;
	г) отложение осадка не влияет на теплопередачу.
131	Наличие в паре небольших примесей воздуха и неконденсирующихся газов
	а) повышает коэффициент теплоотдачи;
	б) не влияет на коэффициент теплоотдачи;
	в) резко снижает коэффициент теплоотдачи;
	Γ) увеличивает $\Delta t = t_{Hac} - t_{CM}$.
132	Коэффициент теплоотдачи от горячей жидкости к стенке трубы можно увеличить
	а) увеличивая скорость движения жидкости;
	б) увеличивая время пребывания жидкости в теплообменнике;
	в) увеличивая коэффициент теплопроводности стенки;
	г) уменьшая толщину стенки трубы.
133	Многоходовые теплообменники по трубному пространству применяют
	а) для увеличения скорости жидкости;
	б) для уменьшения образования отложений осадка;
101	в)) для увеличения скорости пара в теплообменнике
134	При конденсации пара наличие в нем воздуха
	а) не влияет на коэффициент теплоотдачи;
	б) увеличивает коэффициент теплоотдачи; в) уменьшает коэффициент теплоотдачи
135	В кожухотрубчатом теплообменнике поток, имеющий загрязнения, необходимо направлять
100	а) в межтрубное пространство;
	б) безразлично куда направлять поток;
	в) верный ответ не указан
136	Основной фактор, определяющий интенсивность выпаривания и производительность выпарного аппара-
	та, – это разность температур
	а) греющего и вторичного пара;
	б) греющего пара и стенки кипятильной трубки;
	в) греющего пара и кипящего раствора
137	В процессе выпаривания растворитель удаляется
	а) только с поверхности жидкости;
405	б) из всего объема раствора
138	Выпаривание под разрежением
	а) повышает температуру кипения растворов;
	б) понижает температуру кипения растворов;
139	в) не изменяет температуру кипения растворов
139	Многокорпусные выпарные установки применяются для
	а) увеличения площади теплопередачи;
	б) снижения металлоемкости установки;
	б) снижения металлоемкости установки; в) экономии расхода греющего пара;
140	б) снижения металлоемкости установки; в) экономии расхода греющего пара; г) увеличения времени нахождения раствора в зоне выпаривания
140	б) снижения металлоемкости установки; в) экономии расхода греющего пара;

Г (на по	оследовательность)
157	Перечислите колеса лопастных насосов в порядке возрастания их коэффициента быстроходности
	а) центробежные колеса
	б) диагональные колеса
	в) осевые колеса
158	Укажите правильную последовательность технологических операций при проведении процесса фильт-
	рования
	а) удаление осадка;
	б) продувка осадка;
	в) фильтрование суспензии;
	г) просушка осадка;
	д) промывка осадка
159	Расположите газоочистительную аппаратуру в порядке возрастания размеров отделяемых частиц
	а) электрофильтры
	б) мокрые пылеуловители
	в) рукавные фильтры
	г) циклоны
	д) пылеосадительные камеры
160	Расположите механические перемешивающие устройства в порядке возрастания вязкости перемеши-
	ваемых сред
	а) листовые
	б) лопастные
	в) пропеллерные
404	г) рамные
161	Укажите правильную последовательность элементарных процессов, составляющих процесс перемеши-
	вания:
	а) диффузионное смешивание;
	б) конвективное смешивание;
П (откр	в) сегрегация частиц рытого типа)
162	Определить мощность, потребляемую насосом, подающим 20 м ³ /ч воды на высоту 50 м. Полный КПД
102	насоса η = 0,8. Значение мощности записать в кВт, округлив до десятых долей. N=кВт (3,4)
163	При движении реальной жидкости в цилиндрической трубе потери энергии образуются за
	счет энергии (потенциальной)
164	Движущей силой процесса теплопередачи является разность (температур)
165	Барометрические конденсаторы в выпарных установках используют для создания в них (вакуума)
166	Для интенсификации процесса абсорбции хорошо растворимых компонентов надо по возможности уве-
	личить значение коэффициента массоотдачи в фазе (газовой).
167	Для интенсификации процесса абсорбции плохо растворимых веществ следует стремиться увеличить
	значение коэффициента массоотдачи в фазе (жидкой).

3.1.4 ПК-32 - способность участвовать во внедрении и корректировке технологических процессов, средств и систем автоматизации, управления, контроля, диагностики при подготовке производства новой продукции и оценке ее конкурентоспособности

№ за-	Тестовое задание
дания	
А (на вы	бор одного правильного ответа)
168	В открытом сосуде находится жидкость с плотностью <i>p</i> = 1000 кг/м³. Манометр, присоединенный в некоторой точке сосуда, показывает давление <i>p</i> = 5⋅10⁴ Па. На какой высоте над данной точкой находится уровень жидкости в резервуаре? 1) 1,5 м 2) 0,5 м 3) 15 м 4) 5 м
169	Как изменится потеря напора на трение при ламинарном режиме движения жидкости в трубе, если диаметр трубы уменьшить в 2 раза? (Расход остается постоянным) 1) Увеличится в 8 раз 2) Увеличится в 2 раза 3) Уменьшится в 2 раза 4) Увеличится в 16 раз
170	Расход жидкости при турбулентном режиме в трубе постоянного диаметра увеличился в 2 раза. Во сколько раз увеличились местные потери? 1) Уменьшились в 2 раза 2) Не изменились 3) Увеличились в 2 раза 4) Увеличились в 4 раза
171	В зоне гладкостенного сопротивления потери напора по длине пропорциональны скорости в степени 1) 1,752,00 2) 2,0

	3) 1,75
172	4) 1,0 Найти гидравлические потери в канале переменного сечения, если p_1 = 1,5 ат., p_2 = 1,0 ат., v_1 = 5 м/с; v_2
172	10 м/с. При расчете принять: $z_1 = z_2 = 0$; $g = 10$ м/с ²
	$\frac{10 \text{ M/O. Figure Parameters}}{10 \text{ M/O}}$
	1) 1,25 м
	2) 3,25 M
	3) 0,5 M
	4) Правильный ответ не указан
173	Производительность проектируемого отстойника можно увеличить
	а) увеличивая высоту и площадь отстойника в плане, а также скорость осаждения;
	б) увеличивая площадь отстойника в плане;
	в) увеличивая объем отстойника;
	г) увеличивая скорость осаждения частиц и площадь отстойника в плане.
174	Скорость осаждения нешарообразной частицы по сравнению со скоростью осаждения шарообразных
	частиц при прочих равных условиях
	а) больше;
	б) меньше;
175	в) равна. Скорость осаждения частиц можно увеличить
173	а) повышая температуру суспензии;
	б) увеличивая число оборотов мешалки отстойника;
	в) уменьшая скорость потока жидкости через отстойник;
	г) верный ответ не указан.
176	Производительность отстойника не зависит от
	а) скорости осаждения;
	б) высоты отстойника;
	в) диаметра отстойника
177	Каким образом можно увеличить производительность проектируемого отстойника
	а) увеличивая площадь отстойника в плане;
	б) увеличивая объем отстойника;
	в) увеличивая высоту отстойника;
470	г) увеличивая скорость осаждения частиц и площадь отстойника в плане
178	Начало псевдоожижения наступает при
	 а) равенстве силы гидравлического сопротивления слоя весу всех его частиц; б) условии, что вес отдельной частицы уравновешивается силой сопротивления, возникающей при обте
	о) условии, что вес отдельной частицы уравновешивается силой сопротивления, возникающей при оотс
	в) условии, что вес всех частиц больше гидравлического сопротивления слоя;
	г) условии, что вес всех частиц обльше гидравлического сопротивления слоя,
179	Сопротивление неподвижного зернистого слоя при увеличении скорости жидкости в 2 раза, если движе
	ние жидкости через слой ламинарное
	а) остается постоянным;
	б) увеличивается в 2 раза;
	в) уменьшается в 2 раза;
	г) увеличивается в 4 раза
180	Витание частиц наступает при:
	а) равенстве силы гидравлического сопротивления слоя весу всех его частиц;
	б) условии, что вес отдельной частицы уравновешивается силой сопротивления, возникающей при обто
	кании частиц потоком;
	в) условии, что вес всех частиц больше гидравлического сопротивления слоя;
404	г) условии, что вес всех частиц меньше гидравлического сопротивления слоя
181	Скорость фильтрования при подаче суспензии на фильтр центробежным насосом при постоянном избь
	точном давлении на нагнетательной линии насоса
	а) остается постоянной; б) с течением времени уменьшается;
	в) сначала увеличивается, а потом остается постоянной;
	в) сначала увеличивается, а потом остается постоянной, г) увеличивается.
182	Скорость фильтрования при постоянном перепаде давления, с увеличением слоя осадка
	а) остается постоянной;
	б) с течением времени увеличивается;
	в) с течением времени уменьшается;
	г) в начале остается постоянной, потом уменьшается
183	Для увеличения скорости процесса фильтрования суспензии ее следует
	а) подогревать;
	б) охлаждать;
	в) температура не влияет на скорость фильтрования Коэффициент теплоотдачи по одну сторону стенки $\alpha_1 = 100 \text{ BT/m}^2 \cdot \text{K}$, по другую $\alpha_2 = 4000 \text{ BT/m}^2 \cdot \text{K}$. Какой и
184	

Ī	коэффициентов теплоотдачи следует изменять для интенсификации процесса теплопередачи?
	а) Изменение коэффициентов не влияет на интенсификацию теплопередачи;
	б) Необходимо уменьшить α₂;
	в) Необходимо увеличить α₂;
	г) Необходимо увеличить α₁.
185	Назначение ходов в многоходовом теплообменнике по межтрубному пространству для нагревания жид-
	кости водяным паром в том, чтобы
	а) Увеличить скорость жидкости.
	б) Увеличить скорость пара.
	в) Увеличить время пребывания жидкости в аппарате.
400	г) Увеличить время пребывания пара в аппарате
186	Температура кипения раствора зависит от
	а) давления и не зависит от концентрации раствора;
	б) концентрации и не зависит от давления;
407	в) давления и концентрации раствора
187	Какое предельное число корпусов может быть в многокорпусной выпарной установке, если температура
	греющего пара $t_{\rm rp}$ = 120 °C, температура конденсации удаляемого из установки вторичного пара $t_{\rm s.n.}$ = 45
	\sim С. Сумма температурных потерь одного корпуса $\sum \Delta t_{nom}$ =15 °С. Принять, что полезная разность тем-
	ператур по корпусам распределяется равномерно и не должна быть меньше 15 °C
	a) 7;
	6) 3;
	B) 4;
188	COMPRIAN PORTOR OFFICE GENERALITY AND COMPRISON OF THE PROPERTY OF THE PROPERT
188	Основной фактор, определяющий интенсивность выпаривания и производительность выпарного аппара-
	та, – это разность температур
	а) греющего и вторичного пара;
	б) греющего пара и стенки кипятильной трубки; в) греющего пара и кипящего раствора
189	Вторичный пар, отбираемый из выпарной установки для других нужд, называется:
109	а) греющим паром;
	б) экстра-паром;
	в) глухим паром
190	Как изменяются влажность и температура материала в периоде постоянной скорости сушки?
100	а) Влажность материала остается постоянной, а температура возрастает;
	б) Влажность и температура уменьшаются;
	в) Влажность материала уменьшается, а температура остается постоянной;
	г) Влажность и температура материала остаются постоянными
Б (на вы	бор нескольких правильных)
191	
ופון	Динамические насосы
ופו	Динамические насосы
ופו	
וטו	Динамические насосы 1) центробежные;
191	Динамические насосы 1) центробежные; 2) осевые;
ופו	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые;
192	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные;
	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые
	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы
	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые;
192	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные.
	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные.
192	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу;
192	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает;
192	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается
192	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от
192	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела;
192	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; б) режима движения и формы обтекаемого тела;
192 193	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; б) режима движения и формы обтекаемого тела; в) плотности среды и диаметра частицы
192	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; б) режима движения и формы обтекаемого тела; в) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается
192 193	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; б) режима движения и формы обтекаемого тела; в) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается а) порозность;
192 193	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; б) режима движения и формы обтекаемого тела; в) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается а) порозность; б) высота слоя;
192 193 194	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; б) режима движения и формы обтекаемого тела; в) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается а) порозность; б) высота слоя; в) гидравлическое сопротивление
192 193	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; 6) режима движения и формы обтекаемого тела; в) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается а) порозность; 6) высота слоя; в) гидравлическое сопротивление Коэффициент теплопередачи в кожухотрубном теплообменнике можно увеличить:
192 193 194	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; 6) режима движения тела; 6) режима движения и формы обтекаемого тела; в) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается а) порозность; 6) высота слоя; 8) гидравлическое сопротивление Коэффициент теплопередачи в кожухотрубном теплообменнике можно увеличить: а) увеличением скорости движения жидкости;
192 193 194	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; 6) режима движения и формы обтекаемого тела; 8) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается 6) высота слоя; 8) гидравлическое сопротивление Коэффициент теплопередачи в кожухотрубном теплообменнике можно увеличить: a) увеличением скорости движения жидкости; 6) уменьшением толщины стенки;
192 193 194	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи напор насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; 6) режима движения и формы обтекаемого тела; 8) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается а) порозность; 6) высота слоя; 8) гидравлическое сопротивление Коэффициент теплопередачи в кожухотрубном теплообменнике можно увеличить: а) увеличением скорости движения жидкости; 6) умельшением толщины стенки; 8) удалением накипи со стенок;
192 193 194 195	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения и формы обтекаемого тела; 8) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается а) порозность; 6) высота слоя; 8) гидравлическое сопротивление Коэффициент теплопередачи в кожухотрубном теплообменнике можно увеличить: а) увеличением скорости движения жидкости; 6) уменьшением толщины стенки; 8) удалением накипи со стенок; г) уменьшением накипи со стенок;
192 193 194	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) виктовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса меньшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; 6) режима движения и формы обтекаемого тела; в) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается (б) высота слоя; в) гидравлическое сопротивление Коэффициент теплопередачи в кожухотрубном теплообменнике можно увеличить: а) увеличением скорости движения жидкости; б) уменьшением толщины стенки; в) удалением накипи со стенок; г) уменьшением коэффициента теплопроводности стенки Накипь на стенках выпарного аппарата необходимо удалять, так как ее наличие
192 193 194 195	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) винтовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса уменьшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; 6) режима движения тела; 8) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается а) порозность; 6) высота слоя; 8) гидравлическое сопротивление Коэффициент теплопередачи в кожухотрубном теплообменнике можно увеличить: а) увеличением скорости движения жидкости; 6) уменьшением толщины стенки; 8) удалением накипи со стенок; г) уменьшением накипи со стенок; г) уменьшением коэффициента теплопроводности стенки Накипь на стенках выпарного аппарата необходимо удалять, так как ее наличие а) уменьшает коэффициент теплопередачи;
192 193 194 195	Динамические насосы 1) центробежные; 2) осевые; 3) вихревые; 4) струйные; 5) поршневые Объемные насосы 1) поршневые; 2) шестеренные; 3) виктовые; 4) центробежные. Верные утверждения 1) мощностью насоса называется мощность на его валу; 2) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса мощность убывает; 3) с увеличением подачи насоса меньшается Сопротивление, возникающее при движении тела в жидкости, зависит от а) скорости движения тела; 6) режима движения и формы обтекаемого тела; в) плотности среды и диаметра частицы При переходе зернистого слоя в псевдоожиженное состояние увеличивается (б) высота слоя; в) гидравлическое сопротивление Коэффициент теплопередачи в кожухотрубном теплообменнике можно увеличить: а) увеличением скорости движения жидкости; б) уменьшением толщины стенки; в) удалением накипи со стенок; г) уменьшением коэффициента теплопроводности стенки Накипь на стенках выпарного аппарата необходимо удалять, так как ее наличие

198	Укажите линии на диаграмме, характеризующие процесс ректификации
	$y y = f(x)$ $y = \varphi(x)$
	y = f(x)
	$\longrightarrow x$
199	Гидравлическое сопротивление орошаемой тарелки колонного аппарата зависит от:
	а) сопротивления сухой насадки;
	б) сопротивление газожидкостного потока на тарелке; в) сопротивления, обусловленного силами поверхностного натяжения;
	г) конструкции колонны
200	Гидродинамические режимы работы тарельчатых колонных аппаратов
	а) пузырьковый; б) пенный;
	в) струйный;
	г) эмульгирования
201	Гидродинамические режимы работы насадочных колонных аппаратов
	а) пленочный; б) подвисания;
	в) эмульгирования;
	г) пузырьковый
202	Какие технологические процессы можно осуществить с использование абсорбции? а) Разделение паровых смесей.
	а) Разделение паровых смесеи. б) Получение раствора газа в жидкости.
	в) Разделение газовых смесей.
000	г) Поглощение газов из газовых смесей твердыми поглотителями
203	Какие из перечисленных факторов способствуют интенсификации процесса абсорбции: а) увеличение температуры;
	б) уменьшение температуры;
	в) увеличение давления;
204	г) уменьшение давления.
204	Виды конкурентных преимуществ а) ресурсные
	б) технико-технологические
D (up po	в) организационные
205	ответствие) В круглой трубе происходит движение жидкости при <i>Re</i> = 500. Можно ли применить форму-
	64.1 m^2
	$h_i =$
	лу: $Re \ d \ 2g$ для расчета потери напора на трение в трубе, если число Рейнольдса увеличится: a) в 2 раза 1) можно
	б) в 5 раз 2) нельзя
206	Насос работает при числе оборотов n₁. Новое число оборотов можно определить
	1) по значению напоров A) $n_2 = n_1 \sqrt{\frac{H_2}{H_1}}$
	$h_1 = h_1 \sqrt{H_1}$
	2) по значению подач Б) $n_1 = n_2 \frac{Q_2}{Q_2}$
	2) по значению подач Б) $n_2=n_1\frac{Q_2}{Q_1}$
	O_{\bullet}
	B) $n_2 = n_1 \sqrt{\frac{Q_2}{Q_1}}$
	1
	$\Gamma) \ n_2 = n_1 \frac{H_2}{H_1}$
207	Установите соответствие формулы для расчета коэффициента местного сопротивления при процессе
207	осаждения и видом движения
	1) $\xi = 0.44$:
	, , ,
	$\xi = \frac{24}{\text{Re}}$
	, , ,
	$\xi = \frac{18.5}{Re^{0.6}}$
	$Re^{0.0}$. a) ламинарное движение;
	б) переходная область;
i	в) турбулентное движение.

Г (на по	оследовательность)
208	Укажите правильную последовательность пересчета характеристик при регулировании работы центро-
	бежного насоса на сеть изменением частоты вращения вала рабочего колеса
	a) определение коэффициента пропорциональности k
	б) построение параболы подобных режимов
	в) определение требуемого числа оборотов вала рабочего колеса
	г) пересчет характеристик по законам пропорциональности
	д) пересчет допустимого кавитационного запаса
209	Укажите правильную последовательность пересчета характеристик при регулировании работы центро-
	бежного насоса на сеть обрезкой рабочего колеса
	а) определение коэффициента пропорциональности С
	б) построение параболы обрезок
	в) определение требуемого диаметра рабочего колеса
	г) определение коэффициента быстроходности в оптимальном режиме и сравнение его с рекомендуе-
	мым
	д) пересчет характеристик насоса
210	Постройте пирамиду конкурентоспособности
	1) конкурентоспособность продукции
	2) конкурентоспособность предприятия
	3) конкурентоспособность отрасли
	4) конкурентоспособность экономики
	5) конкурентоспособность страны
211	Постройте пирамиду конкурентоспособности продукции с точки зрения потребителя
	1) цена
	2) цена+качество
	3) качество+дополнительные факторы+цена
	4) уникальность, новизна
	5) бренд
	ытого типа)
212	Количество энергии, сообщаемой насосом единице веса перекачиваемой жидкости - это
	(напор)
213	Если исходный раствор поступает нагретым до температуры кипения, то в однокорпусном аппарате на
	выпаривание 1 кг воды надо кг греющего пара

3.2 Собеседование (вопросы к зачету, защите лабораторных работ)
3.2.1 ОПК-1- способность использовать основные закономерности, действующие в процессе изготовления продукции требуемого качества, заданного количества при наименьших затратах общественного труда

Номер	Текст вопроса
вопроса	
	Вопросы к зачету
214	Предмет и задачи курса «Технологические процессы и производства».
215	Современные задачи пищевой и химической промышленности.
216	Классификация основных технологических процессов.
217	Общие принципы анализа и расчета процессов и оборудования: материальный и энергетический балансы, интенсивность, эффективность, скорость, движущая сила процесса, сопротивление переносу.
218	Жидкие технологические среды, как объект исследования. Характеристики движения жидкости. Матема тическое описание движения и равновесия.
219	Роль гидромеханических процессов в пищевых и химических производствах.
220	Классификация технологических систем. Классификация технологических процессов.
221	Течение жидкости через зернистые и пористые слои. Математическое описание процесса.
222	Физическая сущность процесса осаждения. Основные закономерности процесса, показатели, влияющи на качество и количество выпускаемой продукции.
223	Фильтрование. Физическая сущность процесса.
224	Показатели, влияющие на качество и количество фильтрата и осадка.
225	Перемешивание в жидких средах. Виды перемешивания. Механическое перемешивание.
226	Показатели, влияющие на качество и количество продуктов перемешивания.
227	Значение процессов теплообмена в химической и пищевой промышленности. Виды переноса тепла, и характеристики.
228	Основы теплопередачи. Математическое описание процессов теплообмена: дифференциальное уравнение теплопроводности; дифференциальное уравнение конвективного переноса теплоты.
229	Применение теории теплового подобия при моделировании тепловых процессов. Критериальное уравне ние теплоотдачи.
230	Уравнение теплопередачи для плоской и цилиндрической стенок. Связь между коэффициентом теплопередачи и коэффициентами теплоотдачи.
231	Выпаривание. Физическая сущность процесса. Методы проведения выпаривания.
232	Показатели, влияющие на качество и количество выпускаемой продукции: общая и полезная разностемператур, расход греющего пара и поверхность теплообмена.
233	Общие сведения о массообменных процессах. Классификация и их общая характеристика. Основы ма

	сопередачи со свободной границей раздела фаз газ (пар) - жидкость, жидкость - жидкость.
234	Молекулярный и конвективный массоперенос. Уравнение массоотдачи. Критерии диффузионного подобия.
235	Критериальное уравнение массоотдачи. Выражение коэффициента массопередачи через коэффициенты массоотдачи.
236	Абсорбция. Общие сведения о процессе и области его практического применения.
237	Перегонка жидкостей. Простая перегонка и ректификация.
238	Равновесие в системе пар - жидкость. Закон Рауля. Уравнение линии равновесия.
239	Показатели, влияющие на качество и количество ректификата.
240	Массообмен между жидкостью (газом или паром) и твердым телом. Массоперенос в твердой фазе. Массоперенос во внешней фазе
241	Основные характеристики пористых тел. Адсорбция. Адсорбенты. Условия десорбции.
242	Показатели, влияющие на качество и количество продуктов адсорбции.
243	Сушка. Общие сведения. Конвективная сушка влажных материалов.
244	Физические свойства влажного воздуха. Диаграмма I - х.
245	Показатели, влияющие на качество и количество высушиваемой продукции.
	Вопросы к защите лабораторных работ
246	Дифференциальные уравнения равновесия Эйлера. Физический смысл слагаемых, входящих в уравне-
	ния Эйлера для поля сил земного тяготения
247	Что такое избыточное и абсолютное давление?
248	Что такое ламинарный режим движения? Его особенности.
249	Что такое турбулентный режим движения? Его особенности.
250	Число Рейнольдса для цилиндрических труб и для потоков с некруглым сечением.
251	Каково уравнение Бернулли для установившегося потока несжимаемой жидкости?
252	Гидравлически гладкие трубы, область влияния вязкости и шероховатости, гидравлически шероховатые трубы.
253	Что такое относительная шероховатость, эквивалентная шероховатость?
254	Какие поверхности считаются гидравлически гладкими?
255	Что такое местные сопротивления? Коэффициент местного гидравлического сопротивления. Формула Вейсбаха.
256	Каково основное уравнение центробежных машин (уравнение Эйлера)?
257	Основные характеристики движения в слое зернистого материала.
258	Силы, действующие на движущуюся в жидкости шарообразную частицу
259	Основные параметры, характеризующие структуру несжимаемых осадков.
260	Дифференциальное уравнение процесса фильтрования при постоянном перепаде давления и его решение
261	Назначение процесса перемешивания. Типы мешалок, область их применения
262	Теплопередача. Механизм процесса и основное уравнение теплопередачи
263	Сущность физической абсорбции и абсорбции, сопровождаемой химической реакцией.
264	Законы массопередачи, которым подчиняется процесс абсорбции
265	Принципиальная схема периодической простой перегонки, сущность процесса. Фракционная перегонка
266	Отличительная особенность сушки от других способов обезвоживания

3.2.2 ПК-3 - готовность применять способы рационального использования сырьевых, энергетических и других видов ресурсов, современные методы разработки малоотходных, энергосберегающих и экологически чистых технологий, средства автоматизации технологических процессов и производств

Номер во- проса	Текст вопроса	
	Вопросы к зачету	
267	Малоотходные и безотходные технологии. Критерии безотходности.	
268	Принципы безотходных технологий: системность; комплексность использования ресурсов; цикличность	
	материальных потоков; минимальное влияние на окружающую природную и социальную среду.	
269	Понятие энергосберегающей технологии. Цели и задачи энергосбережения.	
270	Основные направления энергосбережения: полезное использование (утилизация) энергетических потерь; модернизация оборудования с целью уменьшения потерь энергии; интенсивное энергосбережение.	
271	Экологизация производства.	
272	Уравнения энергии. Потери энергии при движении технологических сред.	
273	Гидродинамика псевдоожиженного слоя. Потери энергии при движении через зернистые и пористые слои.	
274	Движущая сила, сопротивление фильтрования. Уравнения при постоянном перепаде давления и постоянной скорости процесса.	
275	Энергосбережение при перемешивании.	
276	Определение средней движущей силы процесса теплопередачи при переменных температурах теплоносителей.	
277	Промышленные способы подвода и отвода теплоты в технологической аппаратуре.	
278	Материальный и тепловой балансы процесса выпаривания	
279	Однокорпусные и многокорпусные выпарные установки, преимущества многократного выпаривания.	
280	Законы фазового распределения (равновесия). Направление протекания массообменных процессов.	

281	Материальный баланс процесса абсорбции.
282	Уравнение линий рабочих концентраций. Минимальный и оптимальный расходы абсорбента.
283	Схема установок периодической и непрерывной ректификации. Материальный баланс непрерывной рек-
	тификации бинарных смесей.
284	Тепловой баланс ректификационной колонны.
285	Материальный баланс процесса адсорбции.
286	Материальные балансы сушильных установок. Расход теплоносителей.
287	Тепловые балансы сушильных установок. Теоретическая и действительная сушилка.
Вопросы к	защите лабораторных работ
288	Что такое гидростатический напор?
289	Геометрическая и энергетическая интерпретация основного уравнения гидростатики
290	Значение режима движения для расчета трубопроводов.
291	В чем причины разрушения ламинарного режима?
291	В чем геометрический и энергетический смысл уравнения Бернулли?
293	Построение пьезометрической и напорной линий, графическое определение потери напора.
294	Что характеризует коэффициент α в уравнении Бернулли?
295	Что показывает пьезометрическая линия и линия полной удельной энергии?
296	Каково уравнение Бернулли при расчете потерь на прямолинейных участках трубопровода?
297	Как определить потери напора на трение?
298	Каковы причины возникновения местных потерь энергии?
299	Как рассчитываются мощность двигателя и КПД вентиляторной установки?
300	Физические представления о сопротивлениях. Сопротивление неподвижных и взвешенных слоев.
301	Функциональная связь критериев Рейнольдса и Архимеда. Коэффициент сопротивления
302	Движущая сила фильтрования
303	Вывод формулы для определения мощности перемешивания.
304	Параметры, от которых зависит мощность, потребляемая мешалкой
305	Тепловая нагрузка аппарата. Определение тепловой нагрузки аппарата. Тепловой баланс.
306	Сопротивление орошаемых тарелок
307	Движущая сила процессов массопередачи.
308	Рабочая линия и материальный баланс абсорбции
309	Дифференциальное уравнение материального баланса простой перегонки
310	Кривая сушки, ее построение.
311	Построение кривой скорости сушки, сущность метода графического дифференцирования

3.2.3 ПК-31 - способность выявлять причины появления брака продукции, разрабатывать мероприятия по его устранению, контролировать соблюдение технологической дисциплины на рабочих местах

Номер во-	Текст вопроса		
проса			
	Вопросы к зачету		
312	Способы регулирования работы гидравлических машин с целью изготовления продукции в заданном количестве, требуемого качества.		
313	Технологическая дисциплина при обслуживании насосных установок.		
314	Явление пневмотранспорта.		
315	Возможные причины брака конечных продуктов процесса осаждения и способы их устранения.		
316	Технологическая дисциплина при обслуживании отстойников.		
317	Возможные причины брака конечных продуктов процесса фильтрования и способы их устранения.		
318	Технологическая дисциплина при работе на фильтровальных станциях.		
319	Возможные причины брака конечных продуктов процесса перемешивания и способы их устранения.		
320	Технологическая дисциплина при обслуживании перемешивающих устройств.		
321	Показатели процесса, влияющие на количество и качество выпускаемой продукции, возможные причины брака и способы их устранения при реализации тепловых процессов.		
322	Технологическая дисциплина при работе с теплообменной аппаратурой		
323	Возможные причины брака и способы их устранения при выпаривании.		
324	Технологическая дисциплина при работе на выпарных установках.		
325	Показатели, влияющие на качество и количество продуктов абсорбции.		
326	Возможные причины брака продуктов абсорбции и способы их устранения.		
327	Конструкции абсорберов и технологическая дисциплина при работе на абсорбционных установках.		
328	Уравнение линий рабочих концентраций укрепляющей и исчерпывающей частей ректификационной колонны.		
329	Возможные причины брака ректификата и способы их устранения.		
330	Типы ректификационных колонн и технологическая дисциплина при работе на колонных аппаратах.		
331	Возможные причины брака продуктов адсорбции и способы их устранения.		
332	Принципиальные схемы адсорбционных процессов.		
333	Адсорбционная аппаратура и технологическая дисциплина при работе на ней.		
334	Основы кинетики процесса конвективной сушки: свойства влажных материалов, кинетическая кривая конвективной сушки, определение продолжительности первого периода сушки, определение продолжительности второго периода сушки.		

335	Возможные причины брака высушенного материала и способы их устранения.	
336	Конструкции сушилок и технологическая дисциплина при работе на сушильных установках	
	Вопросы к защите лабораторных работ	
337	Силы, действующие на жидкость при равномерном вращении ее вокруг вертикальной оси в цилиндри-	
	ческом сосуде.	
338	При каком условии жидкость в сосуде находится в состоянии относительного равновесия?	
339	Что такое число Рейнольдса и его физический смысл?	
340	Что такое критическое число Рейнольдса?	
341	В чём отличие уравнения Бернулли для потоков идеальной и реальной жидкостей?	
342	В чем зависимость коэффициента гидравлического трения от числа Рейнольдса при ламинарном и тур-	
	булентном режимах?	
343	Что такое пограничный слой и от чего зависит его толщина?	
344	Какие факторы определяют величину потерь энергии при резком повороте потока, при плавном поворо-	
	те?	
345	Как зависит режим работы вентилятора от числа оборотов?	
346	Понятие о псевдоожиженном состоянии зернистого слоя, условия его существования.	
347	Структура псевдоожиженных слоев. Характеристика различных стадий псевдоожижения.	
348	Факторы, влияющие на скорость осаждения. Методы интенсификации процесса осаждения	
349	Константы процесса фильтрования, их физический смысл и практическое значение	
350	Показатель, характеризующий качество смешивания	
351	Схемы движения теплоносителей. Определение среднего температурного напора	
352	Связь коэффициентов теплоотдачи и теплопередачи	
353	Характер барботажа при изменении расхода газа через тарелку.	
354	Гидродинамические режимы работы тарелок	
355	Направление массопередачи при абсорбции	
356	Расчет количества получаемого остатка путем графического интегрирования.	
357	Расчет количества дистиллята и содержания в нем НК	
358	Формы связи влаги с материалом. Характер удаления влаги из материала	
359	Характеристика двух периодов сушки, критическая влажность материала	

3.2.4 ПК-32 - способность участвовать во внедрении и корректировке технологических процессов, средств и систем автоматизации, управления, контроля, диагностики при подготовке производства новой продукции и оценке ее конкурентоспособности

Номер во-	Текст вопроса							
проса								
	Вопросы к зачету							
360	Принципы оценки конкурентоспособности новой продукции.							
361	Гидравлические машины. Основные характеристики и параметры.							
362	Способы корректировки процессов транспортирования жидких технологических сред при подготовке производства новой продукции.							
363	Интенсивность и эффективность псевдоожижения.							
364	Способы интенсификации процесса осаждения при подготовке производства новой продукции, оценка ее конкурентоспособности.							
365	Способы интенсификации процесса фильтрования при подготовке производства новой продукции оценка ее конкурентоспособности.							
366	Интенсивность и эффективность перемешивания.							
367	Способы интенсификации процесса перемешивания при подготовке производства новой продукции оценка ее конкурентоспособности.							
368	Экономически целесообразное число корпусов выпарной установки при подготовке производства новой продукции.							
369	Средняя движущая сила процессов массопередачи.							
370	Расчет массообменных аппаратов.							
371	Абсорбция, сопровождаемая химической реакцией. Фактор ускорения.							
372	Способы интенсификации процесса абсорбции при подготовке производства новой продукции, оценка ее конкурентоспособности.							
373	Способы интенсификации процесса ректификации при подготовке производства новой продукции, оцен ка ее конкурентоспособности.							
374	Способы интенсификации процесса адсорбции при подготовке производства новой продукции, оценка ее конкурентоспособности.							
375	Способы интенсификации процесса сушки при подготовке производства новой продукции, оценка ек конкурентоспособности.							
	Вопросы к защите лабораторных работ							
376	Что такое относительное равновесие (покой) жидкости? Примеры такого равновесия, встречающиеся природе и использующиеся в технике.							
377	По какому закону изменяется давление в жидкости по глубине и по радиусу цилиндрического сосуда при относительном покое?							
378	Какую форму представляет свободная поверхность при относительном равновесии в случае прямоли нейного и равноускоренного движения сосуда и при вращении его вокруг вертикальной оси?							
379	Какие факторы могут оказать влияние на критическую величину числа Рейнольдса?							

380	Почему режим течения определяется по числу Рейнольдса?				
381	Уравнение неразрывности для потока.				
382	Как производится измерение скорости струйки $v_{ m max}$ и средней скорости жидкости $v_{ m cp}$ в потоке?				
383	Чем можно объяснить то, что при турбулентном движении в квадратичной области потери напора по				
	длине пропорциональны 2-й степени скорости?				
384	От каких факторов зависит λ в различных зонах?				
385	Меняется ли ξ в зависимости от режима движения жидкости?				
386	Каково устройство центробежного вентилятора. Роль «улитки», конфузора, диффузора?				
387	Понятие критической скорости и скорости уноса.				
388	Основное уравнение взвешенного слоя. Причины постоянства $\Delta P_{\text{сл}}$ при изменении v_{o} в интервале ско-				
	ростей воздуха от u_{KP} до u_{YH} .				
389	Расчет критической скорости $u_{\rm kp}$ с использованием графической зависимости Ly = $f({\sf Ar})$.				
390	Определение скорости осаждения расчетным путем				
391	Формула производительности отстойников. Расчет отстойников				
392	Типы фильтровальных перегородок и требования, предъявляемые к материалам фильтрованных пере-				
	городок				
393	Конструкции фильтров периодического и непрерывного действий				
394	Интенсивность и эффективность перемешивания				
395	Методы интенсификации процесса теплопередачи.				
396	Конструкция теплообменника типа «труба в трубе»				
397	Назначение, устройство и принцип действия колпачковой тарелки				
398	Конструкции тарельчатых колонных аппаратов				
399	Классификация и принцип действия абсорбционных аппаратов. Устройство абсорберов				
400	Интенсификация процесса абсорбции				
401	Измерение концентрации НК в водно-спиртовых смесях. Способы выражения состава фаз				
402	Константа скорости сушки и ее физический смысл.				
403	Определение продолжительности процесса сушки, вывод расчетных уравнений				
404	Устройство сушилок				

3.3 Кейс-задания

3.3.1 ОПК-1- способность использовать основные закономерности, действующие в процессе изготовления продукции требуемого качества, заданного количества при наименьших затратах общественного труда

Номер во-	Текст задания
проса	
405	Ситуация. Вы работаете на очистных сооружениях, необходимо провести реконструкцию с целью увеличения производительности отстойников.
	Задание. Предложить мероприятия по увеличению производительности отстойников
406	Ситуация. Вы работаете на сахарном заводе, для подогрева жомопресованной воды перед поступлением в отстойник используется вертикальный кожухотрубчатый теплообменник. За 5 мин вода должна нагреваться от 35 до 85 °C. Сейчас за пять минут вода нагревается от 35 до 60 °C.
	Задание: Установить причину данного происшествия и предложить ряд мероприятий по предотвращению подобных ситуаций.
407	Ситуация. Вы работаете оператором противоточного насадочного абсорбера, служащего для поглощения аммиака из смеси его с воздухом водой при следующих условия: начальная концентрация аммиака в воде x_i = 0 кмоль/кмоль, ее расход $L = 3,89 \cdot 10^{-2}$ кмоль/с, конечная $y_k = 0,0025$ кмоль/кмоль. Расход газовой смеси $G = 1,94 \cdot 10^{-2}$ кмоль/с.
	Задание. Определить, какой будет концентрация аммиака в воде на выходе из абсорбера заданной при степени извлечения 85%.
408	Ситуация. Вы работаете на спиртзаводе. Ректификационная колонна в цехе работает при флегмовом числе, равном $R = 2,5$, а дистиллят должен иметь концентрацию 82 % мол. Число реальных тарелок в верхней части колонны 12, КПД тарелок $\eta_{\text{T}} = 0,5$.
	Задача. Определить минимальное содержание этилового спирта х _г на нижней (питательной) тарелке укрепляющей части колонны, служащей для увеличения содержания этилового спирта в смеси с водой
409	Ситуация. Вы работаете на спиртзаводе. На предприятие имеется ректификационная колонна, служащая для увеличения концентрации этанола в воде от $x_F = 10 \%$ мол до $x_D = 80 \%$ мол.
	Задача. Определить минимальное флегмовое число данной колонны. Пояснить, на что оно влияет.

3.2.2 ПК-3 - готовность применять способы рационального использования сырьевых, энергетических и других видов ресурсов, современные методы разработки малоотходных, энергосберегающих и экологически чистых технологий, средства автоматизации технологических процессов и производств

Номер во-	Текст задания
проса	
410	Ситуация. В цехе, где вы работаете, необходимо увеличить производительность. Насос подает сырье в количестве 20 м³/ч, создавая напор 50 м. Полный КПД насоса η = 0,8. Задание. Предложить мероприятия по увеличению производительности насоса
411	Ситуация. В цехе, где вы работаете, обнаружили перерасход электроэнергии. Самым энергоемким является насос, который подает 20 м 3 /ч воды на высоту 50 м. Полный КПД насоса η = 0,8.

	Задание. Определить мощность, потребляемую насосом.
412	Ситуация. Вы работаете мастером на очистных сооружениях, необходимо утилизировать отходы из
	отстойников.
	Задание. Предложить мероприятия по обезвреживанию отходов (осадков) очистных сооружений
413	Ситуация. Вы работаете инженером на предприятии. Лопастная мешалка смесителя для перемешива-
	ния технического глицерина размером $d_1 = D/3$ была заменена на меньшую с $d_2 = D/4$. Размешивание в
	обоих случаях производится в условиях ламинарного режима.
	Задание. Определить, как повлияет данное изменение на частоту вращения мешалки при такой же
	мощности электродвигателя?
414	Ситуация. Вы работаете на вакуум-выпарной установке сахарного завода. Перед Вами поставили зада-
	чу экономии энергоносителей.
	Задание. Предложите мероприятия для экономии греющего пара, приходящегося на один кг выпари-
	ваемой воды.
415	Ситуация. Вы работаете на выпарной установке завода по производству минудобрений. Перед Вами
	поставили задачу экономии энергоносителей.
	Задание. Предложите мероприятия по вторичному использованию тепла.
416	Ситуация. В цехе, где Вы работаете оператором линии по сушке фруктовых чипсов, очень высокие по-
	тери теплоты сушилкой в окружающую среду.
	Задание: Предложить комплекс мер по минимизации этих потерь.

3.3.3 ПК-31 - способность выявлять причины появления брака продукции, разрабатывать мероприятия по его устранению, контролировать соблюдение технологической дисциплины на рабочих местах

Задание: Дать развернутые ответы на следующие ситуационные задания

Номер во-	Текст задания
проса	
417	Ситуация. Вы работаете механиком в цехе. При отборе проб выяснилось, что осветленная жидкость
	имеет не надлежащее качество.
	Задание. Объясните причины и предложите мероприятия по улучшению качества осветленной жидкости
418	Ситуация. Вы работаете метрологом на очистных сооружениях. При отборе проб выяснилось, что ос-
	ветленная жидкость имеет не надлежащее качество.
	Задание. Объясните причины и предложите мероприятия по улучшению качества осветленной жидкости
419	Ситуация. Вы работаете на станции фильтрования. При отборе проб выяснилось, что не обеспечивает-
	ся заданная чистота фильтрата.
	Задание. Объясните причины брака, предложите мероприятия по улучшению качества фильтрата
420	Ситуация. Вы работаете на станции фильтрования. Перед Вами поставили задачу провести инструктаж
	по технике безопасности для вновь пришедших операторов.
	Задание. Перечислите мероприятия по обеспечению безопасности при работе на вакум-фильтрах.
421	Ситуация. Вы работаете начальником участка выпаривания завода по производству минудобрений.
	Необходимо провести инструктаж по технике безопасности для вновь пришедших операторов.
	Задание. Перечислите мероприятия по обеспечению безопасности при работе на выпарной установке.
422	Ситуация. Выработаете главным инженером на хлебоприемном пункте. Вам поручили приобрести но-
	вую зерносушильную установку.
	Задание: Подобрать возможные конструкции сушилок, пояснить их достоинства и недостатки.
423	Ситуация. Вы работаете на сушильной установке сахарного завода. Перед Вами поставили задачу про-
	вести инструктаж по технике безопасности для вновь пришедших операторов.
	Задание. Перечислите мероприятия по обеспечению безопасности при работе на сушильной установке.

3.3.4 ПК-32 - способность участвовать во внедрении и корректировке технологических процессов, средств и систем автоматизации, управления, контроля, диагностики при подготовке производства новой продукции и оценке ее конкурентоспособности

Задание: Дать развернутые ответы на следующие ситуационные задания

Номер во-	Текст задания					
проса						
424	Ситуация. Вы работаете мастером на очистных сооружениях, необходимо увеличить скорость осажде-					
	ния в отстойниках.					
	Задание. Предложить мероприятия по увеличению скорости осаждения					
425	Ситуация. Вы работаете на станции фильтрования, необходимо увеличить скорость фильтрования с					
	целью повышения производительности (фильтрование ведется при постоянном перепаде давления).					
	Задание. Предложить мероприятия по увеличению производительности фильтров					
426	Ситуация. Вы работаете на кондитерской фабрике в конфетном цехе. Процесс перемешивания вязко-					
	пластичных конфетных масс имеет низкую интенсивнность.					
	Задание: Повысить интенсивность перемешивания вязкопластичных конфетных масс.					
427	Ситуация. Вы работаете на кондитерской фабрике в конфетном цехе. Процесс перемешивания вязко-					
	пластичных конфетных масс имеет низкую эффективность.					
	Задание: Предложите мероприятия по повышению эффективности процесса.					

428	Ситуация. В цехе работает (по прямоточной схеме) воздухоподогреватель, в котором нагревается воз-							
	дух от температуры $t_1^{'}=20^{\circ}\text{C}$ до $t_2^{'}=210^{\circ}\text{C}$ горячими газами, которые охлаждаются от температуры t_1							
	$= 410 ^{\circ}\text{C}$ до температуры $t_2 = 250 ^{\circ}\text{C}$.							
	Задание. Определить средний температурный напор между воздухом и газом и предложить мероприя-							
	тия по его увеличению.							
429	Ситуация. Вы работаете на предприятии по производству азотной кислоты оператором абсорбционной							
	колонны. Перед Вами поставлена задача интенсифицировать процесс.							
	Задание. Предложите мероприятия по интенсификации процесса абсорбции аммиака водой.							
430	Ситуация. В овощесушильном цехе, где Вы работаете, начальником цеха, сушат абрикосы. Абрикосы							
	поступают в цех с влажностью 75 % и высушиваются до 17 % за 950 с.							
	Задание: Определить какая скорость сушки абрикосов на имеющемся оборудование и предложить ме-							
	роприятия по ее увеличению.							

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Процедуры оценивания в ходе изучения дисциплины знаний, умений и навыков, характеризующих этапы формирования компетенций, регламентируются положениями:

- П ВГУИТ 2.4.03 Положение о курсовых, экзаменах и зачетах;
- П ВГУИТ 4.01.02 Положение о рейтинговой оценке текущей успеваемости.

5. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания для каждого результата обучения по дисциплине

Результаты обучения по	Продмот опочки	Показатель оценивания Критерии оценивания Предмет оценки сформированности компетенций		Шкала оценивания	
этапам форми- рования компе- тенций	(продукт или про- цесс)		сформированности компетенции	Академиче- ская оценка или баллы	Уровень освоения компетенции
ОПК-1- способн			действующие в процессе изготовления про	дукции требуем	ого качества,
	3808		иеньших затратах общественного труда 		Освоена (базо-
Знать основные	Тест	Результат тестирования	50% и более правильных ответов	Зачтено	вый, повышен-
закономерности, действующие в			менее 50% правильных ответов	Не зачтено	Не освоена (не- достаточный)
процессе изготов- ления продукции требуемого качест-	Собеседование (зачет)	Знание основных закономерности, действующие в процессе изготовления продукции требуемого качества, заданного количества	обучающийся решил или предложил вариант решения кейс-задания, ответил не на все вопросы, но в тех, на которые дал ответ, не допустил ошибки	Зачтено	Освоена (базовый, повышенный)
ва, заданного ко- личества			обучающийся не предложил вариантов решения кейс-задания, в ответе допустил более пяти ошибок	Не зачтено	Не освоена (недостаточный)
Уметь использовать основные закономерности, действующие в процессе изготов-	ты) чества, заданного количества при реализации технологических процессов	ные закономерности, дейст-	обучающийся активно участвовал в выполнении работы, получил и обработал результаты эксперимента, проанализировал их, допустил не более 5 ошибок в ответах на вопросы при защите лабораторной работы	Зачтено	Освоена (базовый, повышенный)
ления продукции требуемого качества, заданного количества при реализации технологических процессов		ния продукции требуемого качества, заданного количества при реализации технологиче-	обучающийся выполнял роль наблюдателя при выполнении работы, не внес вклада в обработку результатов эксперимента, не защитил лабораторную работу	Не зачтено	Не освоена (недостаточный)
Владеть способностью использовать основные законо-	Кейс-задание Содержание решения	рвать рно-	обучающийся грамотно разобрался в ситуации, выявил причины случившейся ситуации, предложил несколько альтернативных вариантов выхода из сложившейся ситуации	зачтено	Освоена (повы- шенный)
мерности, дейст- вующие в процессе изготовления про-		Содержание решения	обучающийся разобрался в ситуации, выявил причины случившейся ситуации, предложил один вариант выхода из сложившейся ситуации	зачтено	Освоена (повы- шенный)
дукции требуемого качества, заданного количества при реа-			обучающийся разобрался в сложившейся ситуации, однако не выявил причины случившегося и не предложил вариантов решения	зачтено	Освоена (базо- вый)
лизации технологи- ческих процессов			обучающийся не разобрался в сложившейся ситуации, не выявил причины случившегося и не	не зачтено	Не освоена (недостаточный)

			предложил вариантов решения		
ПК-3 - готовно	сть применять спос	обы рационального исполь:	вования сырьевых, энергетических и других	видов ресурсов	, современные
методы разрабо	отки малоотходных,		огически чистых технологий, средства авп	поматизации т	ехнологических
	1		сов и производств		10 (5
Знать технологиче-	Тест	Результат тестирования	50% и более правильных ответов	Зачтено	Освоена (базовый, повышенный)
ские процессы и производства, со-			менее 50% правильных ответов	Не зачтено	Не освоена (не- достаточный)
временные методы разработки малоот- ходных, энергосбе- регающих и эколо-	Собеседование (за-	Знание технологических про- цессов и производств, совре- менных методов разработки	обучающийся решил или предложил вариант решения кейс-задания, ответил не на все вопросы, но в тех, на которые дал ответ, не допустил ошибки	Зачтено	Освоена (базовый, повышенный)
регающих и эколо- гичных технологий	чет)	малоотходных, энергосбере- гающих и экологичных техно- логий	обучающийся не предложил вариантов решения кейс-задания, в ответе допустил более пяти ошибок	Не зачтено	Не освоена (недостаточный)
Уметь проводить технологические процессы, разраба-	Собеседование (защи-	Умение проводить технологические процессы, разрабатывать малоотходные, энерго-	обучающийся активно участвовал в выполнении работы, получил и обработал результаты эксперимента, проанализировал их, допустил не более 5 ошибок в ответах на вопросы при защите лабораторной работы	Зачтено	Освоена (базовый, повышенный)
тывать малоотход- ные, энергосбере- гающие и экологич- ные технологии	та лабораторной работы)	сберегающие и экологичные технологии	обучающийся выполнял роль наблюдателя при выполнении работы, не внес вклада в обработку результатов эксперимента, не защитил лабораторную работу	Не зачтено	Не освоена (недостаточный)
Владеть современ-			обучающийся грамотно разобрался в ситуации, выявил причины случившейся ситуации, предложил несколько альтернативных вариантов выхода из сложившейся ситуации	зачтено	Освоена (повы- шенный)
ными методами разработки малоотходных, энергосберегающих и экологич-		Copposition politoring	обучающийся разобрался в ситуации, выявил причины случившейся ситуации, предложил один вариант выхода из сложившейся ситуации	зачтено	Освоена (повы- шенный)
ных технологий при реализации техно-	Кейс-задание	Сейс-задание Содержание решения	обучающийся разобрался в сложившейся ситуа- ции, однако не выявил причины случившегося и не предложил вариантов решения	зачтено	Освоена (базо- вый)
логических процес- сов соответствую- щих производств			обучающийся не разобрался в сложившейся ситуации, не выявил причины случившегося и не предложил вариантов решения	не зачтено	Не освоена (недостаточный)
ПК-31 - способно	। ость выявлять прич		кции, разрабатывать мероприятия по его есоеской дисциплины на рабочих местах	устранению, ко	 онтролировать
Знать причины появления брака продукции и состав мероприятий по его устранению,	Тест	Результат тестирования	50% и более правильных ответов	Зачтено	Освоена (базо- вый, повышен- ный)
			менее 50% правильных ответов	Не зачтено	Не освоена (не- достаточный)
технологическую дисциплину	Собеседование (за- чет)	Знание причины появления брака продукции и состав ме-	обучающийся решил или предложил вариант решения кейс-задания, ответил не на все вопросы, но в тех, на которые дал ответ, не допустил ошибки	Зачтено	Освоена (базо- вый, повышен- ный)

		роприятий по его устранению,	обучающийся не предложил вариантов решения		
		технологическую дисциплину	кейс-задания, в ответе допустил более пяти ошибок	Не зачтено	Не освоена (не- достаточный)
Уметь выявить брак продукции и разработать мероприятия по его устранению,	Собеседование (защи- та лабораторной рабо-	Умение выявлять брак продук- ции и разрабатывать меро- приятия по его устранению,	обучающийся активно участвовал в выполнении работы, получил и обработал результаты эксперимента, проанализировал их, допустил не более 5 ошибок в ответах на вопросы при защите лабораторной работы	Зачтено	Освоена (базовый, повышенный)
организовать меро- приятия для контро- ля технологической дисциплины на ра- бочих местах	та лаоораторной раоо- ты)	организовывать мероприятия для контроля технологической дисциплины на рабочих местах	обучающийся выполнял роль наблюдателя при выполнении работы, не внес вклада в обработку результатов эксперимента, не защитил лабораторную работу	Не зачтено	Не освоена (не- достаточный)
Владеть способами			обучающийся грамотно разобрался в ситуации, выявил причины случившейся ситуации, предложил несколько альтернативных вариантов выхода из сложившейся ситуации	зачтено	Освоена (повы- шенный)
выявления и устра- нения брака продук- ции, контроля со-		Содержание решения	обучающийся разобрался в ситуации, выявил причины случившейся ситуации, предложил один вариант выхода из сложившейся ситуации	зачтено	Освоена (повы- шенный)
блюдения техноло- гической дисципли- ны на рабочих мес-	Кейс-задание		обучающийся разобрался в сложившейся ситуации, однако не выявил причины случившегося и не предложил вариантов решения	зачтено	Освоена (базо- вый)
тах			обучающийся не разобрался в сложившейся ситуации, не выявил причины случившегося и не предложил вариантов решения	не зачтено	Не освоена (недостаточный)
ПК-32 - способ управления			овке технологических процессов, средств производства новой продукции и оценке еє		
Знать технологиче-		Знание технологических процессов, основных показателей	обучающийся решил или предложил вариант решения кейс-задания, ответил не на все вопросы, но в тех, на которые дал ответ, не допустил ошибки	Зачтено	Освоена (базовый, повышенный)
ские процессы, основные показатели их интенсивности,	Собеседование (зачет)	их интенсивности и принципы оценки конкурентоспособности продукции	обучающийся не предложил вариантов решения кейс-задания, в ответе допустил более пяти ошибок	Не зачтено	Не освоена (недостаточный)
принципы оценки конкурентоспособ- ности продукции	Тест	Результат тестирования	50% и более правильных ответов	Зачтено	Освоена (базовый, повышенный)
			менее 50% правильных ответов	Не зачтено	Не освоена (не- достаточный)
Уметь оценивать интенсивность технологических процессов, конкурентоспособность новой продукции	Собеседование (защи-		обучающийся активно участвовал в выполнении работы, получил и обработал результаты эксперимента, проанализировал их, допустил не более 5 ошибок в ответах на вопросы при защите лабораторной работы	Зачтено	Освоена (базовый, повышенный)
	та лабораторной рабо- ты)	ность и конкурентоспособность новой продукции	обучающийся выполнял роль наблюдателя при выполнении работы, не внес вклада в обработку результатов эксперимента, не защитил лабораторную работу	Не зачтено	Не освоена (недостаточный)

Владеть методикой			обучающийся грамотно разобрался в ситуации, выявил причины случившейся ситуации, предложил несколько альтернативных вариантов выхода из сложившейся ситуации	зачтено	Освоена (повы- шенный)
корректировки тех- нологических про- цессов при подго-	Кейс-задание	Кейс-задание Содержание решения	обучающийся разобрался в ситуации, выявил причины случившейся ситуации, предложил один вариант выхода из сложившейся ситуации	зачтено	Освоена (повы- шенный)
товке производства новой продукции и оценке ее конкурентоспособности			обучающийся разобрался в сложившейся ситуа- ции, однако не выявил причины случившегося и не предложил вариантов решения	зачтено	Освоена (базо- вый)
			обучающийся не разобрался в сложившейся ситуации, не выявил причины случившегося и не предложил вариантов решения	не зачтено	Не освоена (недостаточный)