МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФГБОУ ВО «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНЫХ ТЕХНОЛОГИЙ»

УТВЕРЖДАЮ
Председатель приемной комиссии,
ректор ФГБОУ ВО «ВГУИТ»
Попов В. Н.
«31» марта 2022 г.

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

по научной специальности основной образовательной программы высшего образования – программы подготовки научных и научно-педагогических кадров в аспирантуре

1.5.6 Биотехнология

Программа разработана на основании $\Phi\Gamma T$ по научной специальности 1.5.6. Биотехнология.

Программа предназначена для лиц, имеющих диплом магистра, диплом специалиста (для поступающих в аспирантуру).

1. Организация внутреннего вступительного испытания

- 1.1 Вступительное испытание проводится в форме тестирования письменно или в дистанционной среде Moodle.
 - 1.2 Вступительное испытание содержит 13 вопросов (из которых):
 - 10 вопросов тестовые задания;
 - 3 вопроса кейс-задания (ситуационные задачи).
 - 1.3 Вступительное испытание оценивается по 100-балльной шкале.
 - 1.4 Длительность вступительного испытания составляет 1,5 часа.

2. Перечень тем, выносимых на внутреннее вступительное испытание

- 1. Молекулярная биология и прикладная биотехнология в производстве продуктов питания и биологически активных веществ.
- 2. Развитие и применение методов генной инженерии для биотехнологии продуктов питания и биологически активных веществ.
 - 3. Микробиология пищевых систем.
- 4. Фудомика применительно к процессам и технологиям пищевых продуктов.
- 5.Трофологические цепи; новые источники и способы переработки пищевого сырья с использованием биотехнологических методов и приемов.
- 6.Биотехнологический и биогенный потенциал пищевого сырья как биологически активной системы.
- 7.Белки животного сырья. Белки мяса и молока. Белки рыбы. Функционально-технологические свойства белков. Растворимость, водо- и жиросвязывающая способность. Вязко-эластично-упругие свойства белков. Денатурация белков. Сущность процесса и значение втехнологии.
- 8.Строение и состав липидов животного сырья. Ацилглицерины, фосфолипиды, цереброзиды, стерины и другие неомыляемые липиды.

Превращения ацилглицеринов с участием сложноэфирных групп и углеводородных радикалов. Гидролиз. Окисление.

- 9.Общая характеристика углеводов. Олигосахарид лактоза. Полисахарид гликоген. Превращения углеводов при производстве пищевых продуктов. Гидролиз. Реакции дегидратации и термической деградации. Меланоидинообразование.
- 10. Минеральные вещества пищевого сырья: классификация и физиологическое значение. Влияние технологической обработки на минеральный состав пищевых продуктов.
 - 11.Водо- и жирорастворимые витамины. Витаминизация продуктов

питания.

- 12. Ферменты. Классификация и номенклатура. Применение ферментов в технологии продуктов животного происхождения. Гидролитические ферменты и их роль в пищевых технологиях.
- 13. Чужеродные вещества пищи: пути их поступления в продукты животного происхождения, влияние на технологические процессы. Допустимые предельные концентрации.
 - 14. Методы обнаружения и способы обеззараживания животного сырья.
- 15.Вода. Структура, физические и химические свойства. Формы связи влаги в пищевых продуктах. Активность воды. Влияние на стабильность продуктов при хранении. Современные методы анализа воды. Значение водоподготовки.
- 16. Пищевые продукты как дисперсные системы. Классификация, основные характеристики. Структурообразование в дисперсных системах.
- 17. Технология продуктов животного происхождения. Характеристика сырья в производстве продуктов животного происхождения. Состав, свойства и направления использования вторичного сырья животного происхождения.
- 18.Первичная переработка сырья животного происхождения. Ассортимент продуктов животного происхождения. Принципы классификации. Сепарирование и его роль в технологии продуктовживотного происхождения.
- 19. Назначение и режимы пастеризации в производстве продуктов животного происхождения.
- 20.Стерилизация и ее влияние на свойства продуктов животного происхождения.
- 21. Эмульсии как основа формирования структуры и качества продуктов животного происхождения.
 - 22. Роль микрофлоры в технологии продуктов животногопроисхождения.
- 23. Виды, значение и применение пищевых добавок в технологии продуктов животного происхождения.
- 24. Технологии многокомпонентных продуктов животного происхождения. Консервное производство. Виды и характеристика тары консервного производства. Проверка на герметичность. Дефекты (пороки) консервов.
- 25. Производство кормовой продукции из вторичного сырья животного происхождения. Виды и назначение процесса сушки в технологии продуктов животного происхождения.
- 26. Режимы и способы холодильной обработки в технологии продуктов животного происхождения.
- 27. Роль и значение упаковочных материалов в обеспечении хранимоспособности продуктов животного происхождения. Использование вакуума в технологии продуктов животного происхождения.
- 28. Растительные компоненты в технологии продуктов животного происхождения.
 - 29. Технология получения жировых продуктов.
- 30. Биологическая безопасность пищевых систем. Продовольственная безопасность и основные критерии ее оценки. Гигиенические требования,

предъявляемые к пищевымпродуктам.

- 31. Нормативно-законодательная основа безопасности пищевой продукции в России. Концепция государственной политики в области здорового питания. Европейская система анализа опасностей по критическим контрольным точкам НАССР и ISO.
- 32.Ветеринарно-санитарный и технологический мониторинг получения экологически чистой продукции.
 - 33. Качество продовольственных товаров и обеспечение их контроля.
- 34. Загрязнение продовольственного сырья и пищевых продуктов ксенобиотиками химического и биологического происхождения. Основные пути загрязнения продуктов питания и продовольственного сырья.
- 35. Меры токсичности веществ. Загрязнение микроорганизмами и их метаболитами. Меры профилактики. Микотоксины. Методы определения микотоксинов и контроль за загрязнением пищевых продуктов. Загрязнение Загрязнение химическими элементами. веществами соединениями, И применяемыми растениеводстве. Нитраты, нитрозоамины. В нитриты, Удобрения.
- 36. Загрязнение веществами, применяемыми в животноводстве. Загрязнение диоксинами и полициклическимиароматическими углеводородами
- 37. Радиоактивное загрязнение продовольственного сырья и пищевых продуктов.
- 38. Метаболизм чужеродных соединений. Антиалиментарные факторы питания. Фальсификация пищевых продуктов

Основные факторы, определяющие качество и безопасность продуктов животного происхождения.

- 39. Экзо и эндоферментные системы, их регулирование. Ферментативный катализ. Кинетика ферментативной модификации свойств сырья и пищевых.
- 40. Новые знания о механизмах биотрансформации сельскохозяйственного сырья, теоретические модели прогнозирования характера его изменений.
 - 41. Фармабиотики и нутрицевтики.
- 42. Технологии, процессы и оборудование для получения экологически безопасных биологически активных добавок, фитопрепаратов и других веществ и соединений алиментарной природы.
 - 43. Аппаратурное обеспечение биотехнологических производств.
- 44. Генетические и селекционные исследования для получения и использования в пищевой промышленности биологически активных веществ, бактериальных и биопрепаратов.
- 45. Технологии микроорганизмов-продуцентов, культур тканей и клеток растений и животных для получения биомассы, продуктов метаболизма, и других продуктов.
- 46. Методы анализа, технико-экономические критерии оценки, создание эффективных композиций биопрепаратов и разработка способов их применения.

- 47. Биокаталитические и биосинтетические процессы комплексной переработки растительного, животного и микробного сырья.
- 48. Ресурсосберегающие биотехнологии продуктов питания, в том числе функциональных и специализированных, пищевых ингредиентов, биологически активных добавок пищевого и кормового назначения.
- 49. Обоснование и регламентирование показателей безопасности биотехнологического производства.
- 50. Клеточные, природоподобные и аддитивные пищевые биотехнологии.
- 51. Математическое моделирование и конструирование биологически активных веществ, стартовых культур, бактериальных заквасок, биопрепаратов, пищевых продуктов.
- 52. Биотехнология жиров, эфирных масел и парфюмерно-косметических продуктов.
- 53. Биопрепараты, полученные с использованием микроорганизмов, в т.ч. из генетически модифицированных источников.
- 54. Автоматизация и когнитивные технологии мониторинга и управления технологическими процессами в биотехнологических производствах.
- 55. Прогнозные модели изменений сырья и пищевых систем в процессе биотрансформации.
 - 56. Теоретические основы биохимии питания; гомеостаз и питание.
- 57. Биотехнологии пищевых продуктов и ингредиентов функционального, специализированного и персонализированного назначения.
- 58. Биологическая безопасность сырья, пищевых и биологически активных добавок, готовых пищевых продуктов и ингредиентов.
- 59. Новые биотехнологические методы исследований сырья, пищевых систем, пищевых добавок и биопрепаратов, биологически активных веществ и готовых продуктов питания.
 - 60. Пищевая экология, экологическая протеомика и микробиом.
 - 61. Биотехнологии переработки вторичных сырьевых ресурсов.
 - 62. Ресурсосбережение в пищевой биотехнологии.

Рекомендуемая литература

- 1. Шуваева, Г.П. Микробиология с основами биотехнологии (теория и практика) : учеб. Пособие / Г.П. Шуваева, Т.В. Свиридова, О.С. Корнеева [и др.]; Воронеж. гос. ун-т инж. технол. Воронеж, 2017. 315 с
- 2. Сапукова, А. Ч. Основы биотехнологии: учебно-методическое пособие / А. Ч. Сапукова, А. А. Магомедова, С. М. Мурсалов. Махачкала: ДагГАУ имени М.М. Джамбулатова, 2020. 98 с. —: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/159406
- 3. Кузнецова, Т. А. Морфология и физиология объектов биотехнологии : учебно-меодическое пособие / Т. А. Кузнецова. Санкт-Петербург : Троицкий мост, 2020. 206 с. ISBN 978-5-6043433-9-5. : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/146837

- 4. Кригер, О. В. Организация биотехнологических производств: учебное пособие / О. В. Кригер, С. А. Иванова. Кемерово: КемГУ, 2018. 99 с. ISBN 979-5-89289-176-8.: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/107701
- 5. Горчаков Э.В.Основы биологической химии : учебное пособие / Горчаков Э.В., Багамаев Б.М., Федота Н.В., Оробец В.А. // Санкт-Петербург : Издательство «Лань», 2019. 208 с. ISBN 978-5-8114-3806-8: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/reader/book/112688/
- 6. Зинкевич, Е. П. Основы биохимии : учебное пособие / Е. П. Зинкевич, Т. В. Лобова, И. А. Еремина. Кемерово : КемГУ, 2017. 108 с. ISBN 979-5-89289-118-8: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/103930
- 7. Макурина, О. Н. Биохимия клетки : учебное пособие / О. Н. Макурина. Самара : СамГАУ, 2020. 86 с. ISBN 978-5-88575-624-2: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/164573
- 8. Брагина, Н. А. Основы биохимии : учебное пособие / Н. А. Брагина, К. А. Жданова. Москва : РТУ МИРЭА, 2019. 125 с: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/171499
- 9. Молекулярная биология: учеб. пособие / О.В. Кригер, С.А. Сухих, О.О. Бабич, М.И. Зимина, Л.С. Дышлюк; Кемеровский технологический институт пищевой промышленности (университет). Кемерово, 2017. 93 с.
- 10. Баженова, И. А. Основы молекулярной биологии. Теория и практика: учебное пособие для вузов / И. А. Баженова, Т. А. Кузнецова. 2-е изд., стер. Санкт-Петербург: Лань, 2021. 140 с. ISBN 978-5-8114-6787-7: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/152444
- 11. Практикум по молекулярной биологии : учебное пособие / Н. В. Юнусова, Д. И. Кузьменко, Е. В. Кайгородова [и др.]. Томск : СибГМУ, 2017. 65 с: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/113509
- 12. Саткеева, А. Б. Молекулярная биотехнология : учебное пособие / А. Б. Саткеева, К. А. Сидорова. Тюмень : ГАУ Северного Зауралья, 2020. 115 с: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/162314
- 13. Музафаров, Е. Н. Биотехнология. Основы биологии: учебное пособие для вузов / Е. Н. Музафаров. Санкт-Петербург: Лань, 2022. 168 с. ISBN 978-5-8114-8242-9: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/193279
- 14. Высокогорский, В. Е. Молекулярно-биологические основы биотехнологии: учебное пособие / В. Е. Высокогорский, О. Н. Лазарева, Т. Д. Воронова. Омск: Омский ГАУ, 2017. 122 с. ISBN 978-5-89764-650-0: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/102877

- 15. Киселева, Т. Н. Основы генетики : учебно-методическое пособие / Т. Н. Киселева. Тамбов : ТГУ им. Г.Р.Державина, 2020. 98 с. ISBN 978-5-00078-417-4: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/177094
- 16. Цаценко, Л. В. Биоэтика и основы биобезопасности: учебное пособие / Л. В. Цаценко. 3-е изд., стер. Санкт-Петербург: Лань, 2021. 92 с. ISBN 978-5-8114-1956-2: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/169114 (дата обращения: 15.03.2022). Режим доступа: для авториз. пользователей.
- 17. Веселова, Т. А. Биоэтические проблемы в биологических и экологических исследованиях : учебно-методическое пособие / Т. А. Веселова, А. А. Мальцева, И. М. Швец. Нижний Новгород : ННГУ им. Н. И. Лобачевского, 2018. 187 с: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/144580 (дата обращения: 15.03.2022). Режим доступа: для авториз. пользователей.
- 18. Клопов, М. И. Биологическая химия: учебное пособие для вузов / М. И. Клопов. Санкт-Петербург: Лань, 2021. 188 с. ISBN 978-5-8114-7319-9: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/169789 (дата обращения: 15.03.2022). Режим доступа: для авториз. пользователей.

4 Примерный образец контрольно-измерительного материала

Минобрнауки России

Федеральное бюджетное государственное образовательное учреждение высшего образования

«Воронежский государственный университет инженерных технологий»

Экзаменационный билет № 1

№ задания	Тестовое задание с вариантами ответов и правильными ответами
1	.Молекула АТФ состоит из:
	а) D-рибозы
	б) аденина
	в) трех фосфатных групп
	г) D-глюкозы
	д) D-фруктозы
2	.Гидролиз жира вызывается ферментом
	а) β-галактозидазой
	б) липазой
	в) химозином
3	.АТФ легко подвергается гидролизу до
	а) глюкозы с выделением энергии
	б) АДФ и фосфата с выделением энергии
	в) АДФ, глюкозы и фосфата с выделением энергии
4	.Избыток глюкозы хранится в мышечной ткани и в печени в виде
	а) хитина
	б) амилозы
	в) гликогена

5.В зависимости от размера отделяемых частиц мембранные методы обработки делят на: ф) денатурацию; б) обратный осмос;в) раскисление; г) ультрафильтрацию; д) сорбцию-десорбцию;е) нанофильтрацию; ж) электрофлотацию; з) микрофильтрацию. 6. АТФ содержится в мышечной ткани в концентрации около а) 5-6 ммоль / г б) 1-2 ммоль /г в) 8-10 ммоль / г 7.К первичным продуктам окисления жира относятся а) альдегиды, б) кетоны, в) оксикислоты, г) гидропероксиды, д) пероксиды, е) насыщенные и ненасыщенные жирные кислоты 8. К нутрицевтикам относятся: а) витамины; б) биофлавоноиды; в) органические кислоты; г) фосфолипиды. 9. Глюкоза, фруктоза, галактоза – это... а) моносахара б) пищевые волокна в) органические кислоты толисахариды 10 Какие методы используются для определения молекулярной массы белковых веществ: а) хроматографический; б) люминесцентный; в) спектроскопический; г) электрофоретический Кейс-задание 11. Ситуация: необходимо разработать биотехнологический процесс niger.

получения лимонной кислоты с использованием плесневого гриба Asp.

Задача: укажите основные этапы, из которых должен состоять биотехнологический процесс, кратко опишите каждый из них.

Вы проводите исследование Ситуация. факторов микроорганизмов. Вам необходимо оснастить свое предприятие новым биотехнологическим оборудованием.

Задача: Укажите основные принципы оснащения биотехнологических производств и кратко опишите каждый из видов.

13. Ситуация. Вы исследуете расу дрожжей для хлебопекарного производства. Во время процесса ферментации произошло повышение температуры в биореакторе на 10°C от её оптимального значения. Каким образом данное повышение температуры может отразиться на росте культуры дрожжей?

Задача: Охарактеризуйте влияние температуры на скорость роста микроорганизма, опираясь на кинетику процесса ферментации